On non-trivial families without a perfect matching

被引:2
|
作者
Frankl, Peter [1 ]
机构
[1] Renyi Inst, Budapest, Hungary
关键词
INTERSECTION-THEOREMS; ERDOS; HYPERGRAPH; SYSTEMS; EDGES;
D O I
10.1016/j.ejc.2019.103044
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let k >= 2, s >= 3 and n = ks be integers. For s > s(0)(k) we determine the maximum of vertical bar f vertical bar for F subset of (([n])(k)) not having a perfect matching nor an isolated vertex. (C) 2019 Elsevier Ltd. All rights reserved.
引用
收藏
页数:10
相关论文
共 50 条
  • [1] The perfect Laplace operator for non-trivial boundaries
    Hauswirth, S
    NUCLEAR PHYSICS B-PROCEEDINGS SUPPLEMENTS, 2001, 94 : 622 - 626
  • [2] Weighted non-trivial multiply intersecting families
    Frankl, P
    Tokushige, N
    COMBINATORICA, 2006, 26 (01) : 37 - 46
  • [3] Weighted Non-Trivial Multiply Intersecting Families
    Peter Frankl
    Norihide Tokushige
    Combinatorica, 2006, 26 : 37 - 46
  • [4] Hypergraphs without non-trivial intersecting subgraphs
    Liu, Xizhi
    COMBINATORICS PROBABILITY & COMPUTING, 2022, 31 (06): : 1076 - 1091
  • [5] Non-trivial d-wise intersecting families
    O'Neill, Jason
    Verstraete, Jacques
    JOURNAL OF COMBINATORIAL THEORY SERIES A, 2021, 178
  • [6] Non-trivial r-wise intersecting families
    P. Frankl
    J. Wang
    Acta Mathematica Hungarica, 2023, 169 : 510 - 523
  • [7] Non-trivial t-intersecting separated families
    Frankl, Peter
    Liu, Erica L. L.
    Wang, Jian
    Yang, Zhe
    DISCRETE APPLIED MATHEMATICS, 2024, 342 : 124 - 137
  • [8] Non-trivial intersecting uniform sub-families of hereditary families
    Borg, Peter
    DISCRETE MATHEMATICS, 2013, 313 (17) : 1754 - 1761
  • [9] NON-TRIVIAL r-WISE INTERSECTING FAMILIES
    Frankl, P.
    Wang, J.
    ACTA MATHEMATICA HUNGARICA, 2023, 169 (02) : 510 - 523
  • [10] Non-trivial r-wise agreeing families
    Frankl, Peter
    Kupavskii, Andrey
    EUROPEAN JOURNAL OF COMBINATORICS, 2025, 126