On non-trivial families without a perfect matching

被引:2
|
作者
Frankl, Peter [1 ]
机构
[1] Renyi Inst, Budapest, Hungary
关键词
INTERSECTION-THEOREMS; ERDOS; HYPERGRAPH; SYSTEMS; EDGES;
D O I
10.1016/j.ejc.2019.103044
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let k >= 2, s >= 3 and n = ks be integers. For s > s(0)(k) we determine the maximum of vertical bar f vertical bar for F subset of (([n])(k)) not having a perfect matching nor an isolated vertex. (C) 2019 Elsevier Ltd. All rights reserved.
引用
收藏
页数:10
相关论文
共 50 条
  • [21] A non-trivial junction
    Benjamin Heinrich
    Nature Nanotechnology, 2018, 13 : 874 - 874
  • [22] Tending to the Non-Trivial
    Kordes, Urban
    PRIMERJALNA KNJIZEVNOST, 2012, 35 (02): : 179 - 191
  • [23] NON-TRIVIAL PURSUITS
    CANBY, ET
    AUDIO, 1985, 69 (03): : 20 - &
  • [24] COUNTABLY COMPACT GROUPS WITHOUT NON-TRIVIAL CONVERGENT SEQUENCES
    Hrusak, M.
    Van Mill, J.
    Ramos-Garcia, U. A.
    Shelah, S.
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2021, 374 (02) : 1277 - 1296
  • [25] Identifying families of multipartite states with non-trivial local entanglement transformations
    Li, Nicky Kai Hong
    Spee, Cornelia
    Hebenstreit, Martin
    Vicente, Julio I. de
    Kraus, Barbara
    QUANTUM, 2024, 8 : 1 - 23
  • [26] Large non-trivial t-intersecting families of signed sets
    Yao, Tian
    Lv, Benjian
    Wang, Kaishun
    AUSTRALASIAN JOURNAL OF COMBINATORICS, 2024, 89 : 32 - 48
  • [27] A topological transformation group without non-trivial equivariant compactifications
    Pestov, Vladimir G.
    ADVANCES IN MATHEMATICS, 2017, 311 : 1 - 17
  • [28] On the Maximum of the Sum of the Sizes of Non-trivial Cross-Intersecting Families
    Frankl, P.
    COMBINATORICA, 2024, 44 (01) : 15 - 35
  • [29] Families of Mordell Curves with Non-trivial Torsion and Rank of at Least Three
    Jimwel, Renz S.
    Bacani, Jerico B.
    MATHEMATICS AND COMPUTING, ICMC 2022, 2022, 415 : 155 - 162
  • [30] Trivial stable structures with non-trivial reducts
    Evans, DM
    JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 2005, 72 : 351 - 363