REPRESENTATIONS OF THE n-DIMENSIONAL QUANTUM TORUS

被引:1
|
作者
Gupta, Ashish [1 ]
机构
[1] Indian Inst Sci Educ & Res Bhopal, Dept Math, Bhopal Bypass Rd, Bhopal 462066, India
关键词
Finite length modules; Gelfand-Kirillov dimension; Quantum torus; Simple modules; CROSSED-PRODUCTS; MODULES;
D O I
10.1080/00927872.2015.1065876
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The n-dimensional quantum torus O-q((F-x)(n)) is defined as the associative F-algebra generated by x(1), ... , x(n) together with their inverses satisfying the relations x(i)x(j) = q(ij)x(j)x(i), where q = (q(ij)). We show that the modules that are finitely generated over certain commutative sub-algebras B are B-torsion-free and have finite length. We determine the Gelfand-Kirillov dimensions of simple modules in the case when K.dim(O-q((F-x)(n))) = n - 1, where K.dim stands for the Krull dimension. In this case, if M is a simple O-q((F-x)(n))-module, then GK-dim(M) = 1 or GK-dim(M) >= GK-dim(O-q((F-x)(n)) - GK-dim(Z(O-q((F-x)(n)))) - 1, where Z(C) stands for the center of an algebra C. We also show that there always exists a simple F * A-module satisfying the above inequality.
引用
收藏
页码:3077 / 3087
页数:11
相关论文
共 50 条
  • [1] Magnetic translation groups in an n-dimensional torus and their representations
    Tanimura, S
    [J]. JOURNAL OF MATHEMATICAL PHYSICS, 2002, 43 (12) : 5926 - 5948
  • [2] RENORMALIZATION ON THE N-DIMENSIONAL TORUS
    BALADI, V
    ROCKMORE, D
    TONGRING, N
    TRESSER, C
    [J]. NONLINEARITY, 1992, 5 (05) : 1111 - 1136
  • [3] Quantum pixel representations and compression for N-dimensional images
    Amankwah, Mercy G.
    Camps, Daan
    Bethel, E. Wes
    Van Beeumen, Roel
    Perciano, Talita
    [J]. SCIENTIFIC REPORTS, 2022, 12 (01)
  • [4] Quantum pixel representations and compression for N-dimensional images
    Mercy G. Amankwah
    Daan Camps
    E. Wes Bethel
    Roel Van Beeumen
    Talita Perciano
    [J]. Scientific Reports, 12
  • [5] NONCHARACTERISTIC EMBEDDINGS OF THE N-DIMENSIONAL TORUS IN THE (N+2)-DIMENSIONAL TORUS
    MILLER, D
    [J]. TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1994, 342 (01) : 215 - 240
  • [6] On crossings of hyperplanes on the n-dimensional torus
    Chou, WS
    Ku, JM
    Shiue, PJS
    [J]. JOURNAL OF ALGEBRA, 1997, 192 (01) : 43 - 54
  • [7] N-Dimensional Twin Torus Topology
    Andujar-Munoz, Francisco J.
    Villar-Ortiz, Juan A.
    Sanchez, Jose L.
    Jose Alfaro, Francisco
    Duato, Jose
    [J]. IEEE TRANSACTIONS ON COMPUTERS, 2015, 64 (10) : 2847 - 2861
  • [8] A finite subdivision rule for the n-dimensional torus
    Brian Rushton
    [J]. Geometriae Dedicata, 2013, 167 : 23 - 34
  • [9] Matching preclusion for n-dimensional torus networks
    Hu, Xiaomin
    Tian, Yingzhi
    Liang, Xiaodong
    Meng, Jixiang
    [J]. THEORETICAL COMPUTER SCIENCE, 2017, 687 : 40 - 47
  • [10] SINGULAR REEB FOLIATIONS ON THE N-DIMENSIONAL TORUS
    ZHUZHOMA, EV
    [J]. MATHEMATICAL NOTES, 1981, 30 (1-2) : 549 - 551