Quantum pixel representations and compression for N-dimensional images

被引:6
|
作者
Amankwah, Mercy G. [1 ,3 ]
Camps, Daan [1 ]
Bethel, E. Wes [1 ,2 ]
Van Beeumen, Roel [1 ]
Perciano, Talita [1 ]
机构
[1] Lawrence Berkeley Natl Lab, Comp Sci Area, Berkeley, CA 94720 USA
[2] San Francisco State Univ, 1600 Holloway Ave, San Francisco, CA 94132 USA
[3] Case Western Reserve Univ, Dept Math Appl Math & Stat, Cleveland, OH 44106 USA
关键词
FLEXIBLE REPRESENTATION; SEGMENTATION; RETRIEVAL; STORAGE; POWER;
D O I
10.1038/s41598-022-11024-y
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
We introduce a novel and uniform framework for quantum pixel representations that overarches many of the most popular representations proposed in the recent literature, such as (I)FRQI, (I)NEQR, MCRQI, and (I)NCQI. The proposed QPIXL framework results in more efficient circuit implementations and significantly reduces the gate complexity for all considered quantum pixel representations. Our method scales linearly in the number of pixels and does not use ancilla qubits. Furthermore, the circuits only consist of R-y gates making them practical in the NISQ era. Additionally, we propose a circuit and image compression algorithm that is shown to be highly effective, being able to reduce the necessary gates to prepare an FRQI state for example scientific images by up to 90% without sacrificing image quality. Our algorithms are made publicly available as part of QPIXL++, a Quantum Image Pixel Library.
引用
收藏
页数:15
相关论文
共 50 条
  • [1] Quantum pixel representations and compression for N-dimensional images
    Mercy G. Amankwah
    Daan Camps
    E. Wes Bethel
    Roel Van Beeumen
    Talita Perciano
    [J]. Scientific Reports, 12
  • [2] REPRESENTATIONS OF THE n-DIMENSIONAL QUANTUM TORUS
    Gupta, Ashish
    [J]. COMMUNICATIONS IN ALGEBRA, 2016, 44 (07) : 3077 - 3087
  • [3] Lifting n-dimensional Galois representations
    Hamblen, Spencer
    [J]. CANADIAN JOURNAL OF MATHEMATICS-JOURNAL CANADIEN DE MATHEMATIQUES, 2008, 60 (05): : 1028 - 1049
  • [4] n-dimensional FLRW quantum cosmology
    Letelier, Patricio S.
    Pitelli, Joao Paulo M.
    [J]. PHYSICAL REVIEW D, 2010, 82 (10):
  • [5] String transformation for n-dimensional image compression
    Kutrib, M
    Löwe, JT
    [J]. SOFSEM 2002: THEORY AND PRACTICE OF INFORMATICS, 2002, 2540 : 208 - 217
  • [6] Thermodynamics of N-dimensional quantum walks
    Romanelli, Alejandro
    Donangelo, Raul
    Portugal, Renato
    Marquezino, Franklin de Lima
    [J]. PHYSICAL REVIEW A, 2014, 90 (02)
  • [7] DISCRETE REPRESENTATIONS OF THE N-DIMENSIONAL WAVE-EQUATION
    HRGOVCIC, HJ
    [J]. JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1992, 25 (05): : 1329 - 1350
  • [8] LIFTING N-DIMENSIONAL GALOIS REPRESENTATIONS TO CHARACTERISTIC ZERO
    Manoharmayum, Jayanta
    [J]. GLASGOW MATHEMATICAL JOURNAL, 2019, 61 (01) : 115 - 150
  • [9] Magnetic translation groups in an n-dimensional torus and their representations
    Tanimura, S
    [J]. JOURNAL OF MATHEMATICAL PHYSICS, 2002, 43 (12) : 5926 - 5948
  • [10] Quality analysis in N-dimensional lossy compression of multispectral remote sensing time series images
    Pesquer, L.
    Zabala, A.
    Pons, X.
    Serra, J.
    [J]. SATELLITE DATA COMPRESSION, COMMUNICATIONS, AND PROCESSING VI, 2010, 7810