Magnetic translation groups in an n-dimensional torus and their representations

被引:8
|
作者
Tanimura, S [1 ]
机构
[1] Kyoto Univ, Dept Engn Phys & Mech, Kyoto 6068501, Japan
关键词
D O I
10.1063/1.1513208
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
A charged particle in a uniform magnetic field in a two-dimensional torus has a discrete noncommutative translation symmetry instead of a continuous commutative translation symmetry. We study topology and symmetry of a particle in a magnetic field in a torus of arbitrary dimensions. The magnetic translation group (MTG) is defined as a group of translations that leave the gauge field invariant. We show that the MTG in an n-dimensional torus is isomorphic to a central extension of a cyclic group Z(nu1)x...xZ(nu2l)xT(m) by U(1) with 2l+m=n. We construct and classify irreducible unitary representations of the MTG in a three-torus and apply the representation theory to three examples. We briefly describe a representation theory for a general n-torus. The MTG in an n-torus can be regarded as a generalization of the so-called noncommutative torus. (C) 2002 American Institute of Physics.
引用
收藏
页码:5926 / 5948
页数:23
相关论文
共 50 条
  • [1] REPRESENTATIONS OF THE n-DIMENSIONAL QUANTUM TORUS
    Gupta, Ashish
    [J]. COMMUNICATIONS IN ALGEBRA, 2016, 44 (07) : 3077 - 3087
  • [2] RENORMALIZATION ON THE N-DIMENSIONAL TORUS
    BALADI, V
    ROCKMORE, D
    TONGRING, N
    TRESSER, C
    [J]. NONLINEARITY, 1992, 5 (05) : 1111 - 1136
  • [3] NONCHARACTERISTIC EMBEDDINGS OF THE N-DIMENSIONAL TORUS IN THE (N+2)-DIMENSIONAL TORUS
    MILLER, D
    [J]. TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1994, 342 (01) : 215 - 240
  • [4] RINGS OF CHARACTERS OF N-DIMENSIONAL REPRESENTATIONS OF FINITELY GENERATED GROUPS
    PLATONOV, VP
    BENIASHKRIVETS, VV
    [J]. DOKLADY AKADEMII NAUK SSSR, 1986, 289 (02): : 293 - 297
  • [5] On crossings of hyperplanes on the n-dimensional torus
    Chou, WS
    Ku, JM
    Shiue, PJS
    [J]. JOURNAL OF ALGEBRA, 1997, 192 (01) : 43 - 54
  • [6] N-Dimensional Twin Torus Topology
    Andujar-Munoz, Francisco J.
    Villar-Ortiz, Juan A.
    Sanchez, Jose L.
    Jose Alfaro, Francisco
    Duato, Jose
    [J]. IEEE TRANSACTIONS ON COMPUTERS, 2015, 64 (10) : 2847 - 2861
  • [7] A finite subdivision rule for the n-dimensional torus
    Brian Rushton
    [J]. Geometriae Dedicata, 2013, 167 : 23 - 34
  • [8] Matching preclusion for n-dimensional torus networks
    Hu, Xiaomin
    Tian, Yingzhi
    Liang, Xiaodong
    Meng, Jixiang
    [J]. THEORETICAL COMPUTER SCIENCE, 2017, 687 : 40 - 47
  • [9] SINGULAR REEB FOLIATIONS ON THE N-DIMENSIONAL TORUS
    ZHUZHOMA, EV
    [J]. MATHEMATICAL NOTES, 1981, 30 (1-2) : 549 - 551
  • [10] A finite subdivision rule for the n-dimensional torus
    Rushton, Brian
    [J]. GEOMETRIAE DEDICATA, 2013, 167 (01) : 23 - 34