Reinforcement Learning based Dynamic Model Selection for Short-Term Load Forecasting

被引:18
|
作者
Feng, Cong [1 ]
Zhang, Jie [1 ]
机构
[1] Univ Texas Dallas, Richardson, TX 75083 USA
关键词
Q-learning; reinforcement learning; model selection; load forecasting; machine learning; REGRESSION;
D O I
10.1109/isgt.2019.8791671
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
With the growing prevalence of smart grid technology, short-term load forecasting (STLF) becomes particularly important in power system operations. There is a large collection of methods developed for STLF, but selecting a suitable method under varying conditions is still challenging. This paper develops a novel reinforcement learning based dynamic model selection (DMS) method for STLF. A forecasting model pool is first built, including ten state-of-the-art machine learning based forecasting models. Then a Q-learning agent learns the optimal policy of selecting the best forecasting model for the next time step, based on the model performance. The optimal DMS policy is applied to select the best model at each time step with a moving window. Numerical simulations on two-year load and weather data show that the Q-learning algorithm converges fast, resulting in effective and efficient DMS. The developed STLF model with Q-learning based DMS improves the forecasting accuracy by approximately 50%, compared to the state-of-the-art machine learning based STLF models.
引用
收藏
页数:5
相关论文
共 50 条
  • [21] A Stacking Learning Model Based on Multiple Similar Days for Short-Term Load Forecasting
    Jiang, Qi
    Cheng, Yuxin
    Le, Haozhe
    Li, Chunquan
    Liu, Peter X.
    MATHEMATICS, 2022, 10 (14)
  • [22] An ensemble deep learning model for short-term load forecasting based on ARIMA and LSTM
    Tang, Lingling
    Yi, Yulin
    Peng, Yuexing
    2019 IEEE INTERNATIONAL CONFERENCE ON COMMUNICATIONS, CONTROL, AND COMPUTING TECHNOLOGIES FOR SMART GRIDS (SMARTGRIDCOMM), 2019,
  • [23] Short-term Load Forecasting Model of GRU Network Based on Deep Learning Framework
    Gao Xiuyun
    Wang Ying
    Gao Yang
    Sun Chengzhi
    Xiang Wen
    Yue Yimiao
    2018 2ND IEEE CONFERENCE ON ENERGY INTERNET AND ENERGY SYSTEM INTEGRATION (EI2), 2018,
  • [24] Short-term load forecasting model based on Volterra filters
    Du, Jie
    Xu, Li-Zhong
    Cao, Yi-Jia
    Guo, Chuang-Xin
    Hou, Rong-Tao
    Xu, Xin
    Kongzhi yu Juece/Control and Decision, 2009, 24 (12): : 1903 - 1908
  • [25] Short-Term Load Forecasting Using Adaptive Annealing Learning Algorithm Based Reinforcement Neural Network
    Lee, Cheng-Ming
    Ko, Chia-Nan
    ENERGIES, 2016, 9 (12)
  • [26] Short-term forecasting electricity load by long short-term memory and reinforcement learning for optimization of hyper-parameters
    Ngoc Anh Nguyen
    Tien Dat Dang
    Elena Verdú
    Vijender Kumar Solanki
    Evolutionary Intelligence, 2023, 16 : 1729 - 1746
  • [27] Short-term forecasting electricity load by long short-term memory and reinforcement learning for optimization of hyper-parameters
    Nguyen, Ngoc Anh
    Dang, Tien Dat
    Verdu, Elena
    Solanki, Vijender Kumar
    EVOLUTIONARY INTELLIGENCE, 2023, 16 (05) : 1729 - 1746
  • [28] Short-term load forecasting based on a multi-model
    Faller, C
    Dvorákova, R
    Horácek, P
    POWER PLANTS AND POWER SYSTEMS CONTROL 2000, 2000, : 107 - 112
  • [29] A hybrid transfer learning model for short-term electric load forecasting
    Xianze Xu
    Zhaorui Meng
    Electrical Engineering, 2020, 102 : 1371 - 1381
  • [30] A hybrid transfer learning model for short-term electric load forecasting
    Xu, Xianze
    Meng, Zhaorui
    ELECTRICAL ENGINEERING, 2020, 102 (03) : 1371 - 1381