Efficient Center Voting for Object Detection and 6D Pose Estimation in 3D Point Cloud

被引:33
|
作者
Guo, Jianwei [1 ,2 ]
Xing, Xuejun [1 ,2 ]
Quan, Weize [1 ,2 ]
Yan, Dong-Ming [1 ,2 ]
Gu, Qingyi [3 ]
Liu, Yang [4 ]
Zhang, Xiaopeng [1 ,2 ]
机构
[1] Chinese Acad Sci, Inst Automat, Natl Lab Pattern Recognit NLPR, Beijing 100190, Peoples R China
[2] Univ Chinese Acad Sci, Sch Artificial Intelligence, Beijing 100049, Peoples R China
[3] Chinese Acad Sci, Inst Automat, Beijing 100190, Peoples R China
[4] Suzhou CASIA All Phase Intelligence Technol Co Lt, Suzhou 215413, Peoples R China
基金
中国国家自然科学基金;
关键词
Three-dimensional displays; Pose estimation; Shape; Object detection; Feature extraction; Object recognition; Transmission line matrix methods; 6D pose estimation; 3D object recognition; point pair features; 3D point cloud; RECOGNITION;
D O I
10.1109/TIP.2021.3078109
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
We present a novel and efficient approach to estimate 6D object poses of known objects in complex scenes represented by point clouds. Our approach is based on the well-known point pair feature (PPF) matching, which utilizes self-similar point pairs to compute potential matches and thereby cast votes for the object pose by a voting scheme. The main contribution of this paper is to present an improved PPF-based recognition framework, especially a new center voting strategy based on the relative geometric relationship between the object center and point pair features. Using this geometric relationship, we first generate votes to object centers resulting in vote clusters near real object centers. Then we group and aggregate these votes to generate a set of pose hypotheses. Finally, a pose verification operator is performed to filter out false positives and predict appropriate 6D poses of the target object. Our approach is also suitable to solve the multi-instance and multi-object detection tasks. Extensive experiments on a variety of challenging benchmark datasets demonstrate that the proposed algorithm is discriminative and robust towards similar-looking distractors, sensor noise, and geometrically simple shapes. The advantage of our work is further verified by comparing to the state-of-the-art approaches.
引用
收藏
页码:5072 / 5084
页数:13
相关论文
共 50 条
  • [41] Segmentation-driven 6D Object Pose Estimation
    Hu, Yinlin
    Hugonot, Joachim
    Fua, Pascal
    Salzmann, Mathieu
    2019 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2019), 2019, : 3380 - 3389
  • [42] 6D Object Pose Estimation for Robot Programming by Demonstration
    Ghahramani, Mohammad
    Vakanski, Aleksandar
    Janabi-Sharifi, Farrokh
    PROGRESS IN OPTOMECHATRONIC TECHNOLOGIES, 2019, 233 : 93 - 101
  • [43] RobotP: A Benchmark Dataset for 6D Object Pose Estimation
    Yuan, Honglin
    Hoogenkamp, Tim
    Veltkamp, Remco C.
    SENSORS, 2021, 21 (04) : 1 - 26
  • [44] 6D Object Pose Estimation Based on the Attention Mechanism
    Zhou, Guanyu
    INTERNATIONAL CONFERENCE ON ALGORITHMS, HIGH PERFORMANCE COMPUTING, AND ARTIFICIAL INTELLIGENCE (AHPCAI 2021), 2021, 12156
  • [45] Focal segmentation for robust 6D object pose estimation
    Ye, Yuning
    Park, Hanhoon
    MULTIMEDIA TOOLS AND APPLICATIONS, 2023, 83 (16) : 47563 - 47585
  • [46] Sparse Keypoint Models for 6D Object Pose Estimation
    Sadran, Emal
    Wurm, Kai M.
    Burschka, Darius
    2013 EUROPEAN CONFERENCE ON MOBILE ROBOTS (ECMR 2013), 2013, : 307 - 312
  • [47] Focal segmentation for robust 6D object pose estimation
    Yuning Ye
    Hanhoon Park
    Multimedia Tools and Applications, 2024, 83 : 47563 - 47585
  • [48] Single-Stage 6D Object Pose Estimation
    Hu, Yinlin
    Fua, Pascal
    Wang, Wei
    Salzmann, Mathieu
    2020 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2020, : 2927 - 2936
  • [49] DoPose-6D dataset for object segmentation and 6D pose estimation
    Gouda, Anas
    Ghanem, Abraham
    Reining, Christopher
    2022 21ST IEEE INTERNATIONAL CONFERENCE ON MACHINE LEARNING AND APPLICATIONS, ICMLA, 2022, : 477 - 483
  • [50] Anchor-Based 6D Object Pose Estimation
    Liu, Zehao
    Wang, Hao
    Liu, Fuchang
    2021 IEEE 7TH INTERNATIONAL CONFERENCE ON VIRTUAL REALITY (ICVR 2021), 2021, : 33 - 40