Estimation of extreme quantiles conditioning on multivariate critical layers

被引:4
|
作者
Di Bernardino, E. [2 ]
Palacios-Rodriguez, F. [1 ]
机构
[1] Univ Seville, Fac Matemat, Dept Estadist & Invest Operat, Calle Tarfia, E-41012 Seville, Spain
[2] CNAM, Dept IMATH, Lab Cedric EA4629, Paris, France
关键词
multivariate risk measures; return levels; critical layers; extreme quantile; RETURN PERIODS; LEVEL SETS; RISK; DISTRIBUTIONS; TAIL; DEPENDENCE; COPULAS; RAINFALL; DESIGN; MODELS;
D O I
10.1002/env.2385
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Let T-i := [Xi vertical bar X is an element of partial derivative L(alpha)], for i = 1; ... , d, where X = (X-1,X- ... , X-d) is a risk vector and partial derivative L(alpha) is the associated multivariate critical layer at level alpha is an element of(0, 1). The aim of this work is to propose a non-parametric extreme estimation procedure for the (1 - p(n))-quantile of T-i for a fixed alpha and when p(n) -> 0, as the sample size n ->infinity. An extrapolation method is developed under the Archimedean copula assumption for the dependence structure of X and the von Mises condition for marginal X-i. The main result is the central limit theorem for our estimator for p = p(n) -> 0, when n tends towards infinity. A set of simulations illustrates the finite-sample performance of the proposed estimator. We finally illustrate how the proposed estimation procedure can help in the evaluation of extreme multivariate hydrological risks. Copyright (C) 2016 John Wiley & Sons, Ltd.
引用
收藏
页码:158 / 168
页数:11
相关论文
共 50 条
  • [1] On the estimation of extreme directional multivariate quantiles
    Torres, Raul
    Di Bernardino, Elena
    Laniado, Henry
    Lillo, Rosa E.
    [J]. COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 2020, 49 (22) : 5504 - 5534
  • [2] Improved estimation of extreme quantiles in the multivariate Lomax (Pareto II) distribution
    Petropoulos, C
    Kourouklis, S
    [J]. METRIKA, 2004, 60 (01) : 15 - 24
  • [3] Improved estimation of extreme quantiles in the multivariate Lomax (Pareto II) distribution
    Constantinos Petropoulos
    Stavros Kourouklis
    [J]. Metrika, 2004, 60 : 15 - 24
  • [4] Nonparametric estimation of multivariate quantiles
    Coblenz, M.
    Dyckerhoff, R.
    Grothe, O.
    [J]. ENVIRONMETRICS, 2018, 29 (02)
  • [5] Simulation and Estimation of Extreme Quantiles and Extreme Probabilities
    Guyader, Arnaud
    Hengartner, Nicolas
    Matzner-Lober, Eric
    [J]. APPLIED MATHEMATICS AND OPTIMIZATION, 2011, 64 (02): : 171 - 196
  • [6] Simulation and Estimation of Extreme Quantiles and Extreme Probabilities
    Arnaud Guyader
    Nicolas Hengartner
    Eric Matzner-Løber
    [J]. Applied Mathematics & Optimization, 2011, 64 : 171 - 196
  • [7] Nonparametric estimation of extreme conditional quantiles
    Beirlant, J
    De Wet, T
    Goegebeur, Y
    [J]. JOURNAL OF STATISTICAL COMPUTATION AND SIMULATION, 2004, 74 (08) : 567 - 580
  • [8] Extreme quantiles estimation for actuarial applications
    Delafosse, E
    Guillou, A
    [J]. COMPTES RENDUS MATHEMATIQUE, 2004, 339 (04) : 287 - 292
  • [9] THE ESTIMATION OF EXTREME QUANTILES IN LOGIT BIOASSAY
    MCLEISH, D
    TOSH, D
    [J]. BIOMETRIKA, 1983, 70 (03) : 625 - 632
  • [10] Wind Speed Extreme Quantiles Estimation
    Chiodo, E.
    [J]. 2013 4TH INTERNATIONAL CONFERENCE ON CLEAN ELECTRICAL POWER (ICCEP): RENEWABLE ENERGY RESOURCES IMPACT, 2013, : 760 - 765