On the estimation of extreme directional multivariate quantiles

被引:2
|
作者
Torres, Raul [1 ]
Di Bernardino, Elena [2 ]
Laniado, Henry [3 ]
Lillo, Rosa E. [4 ,5 ]
机构
[1] Univ Valladolid, Dept Stat & Operat Res, E-47011 Valladolid, Spain
[2] Lab CEDRIC, Conservatoire Natl Arts & Metiers, Paris, France
[3] Univ EAFIT, Dept Math Sci, Medellin, Colombia
[4] Univ Carlos III Madrid, Dept Stat, Getafe, Spain
[5] Univ Carlos III Madrid, UC3M BS Big Data Inst, Getafe, Spain
关键词
High level estimation; directional multivariate quantiles; multivariate extreme value theory; multivariate regular variation; bootstrap method; REGULAR VARIATION; RETURN PERIOD; DEPENDENCE; BOOTSTRAP; INDEX;
D O I
10.1080/03610926.2019.1619770
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
In multivariate extreme value theory (MEVT), the focus is on analysis outside of the observable sampling zone, which implies that the region of interest is associated to high risk levels. This work provides tools to include directional notions into the MEVT, giving the opportunity to characterize the recently introduced directional multivariate quantiles (DMQ) at high levels. Then, an out-sample estimation method for these quantiles is given. A bootstrap procedure carries out the estimation of the tuning parameter in this multivariate framework and helps with the estimation of the DMQ. Asymptotic normality for the proposed estimator is provided and the methodology is illustrated with simulated data-sets. Finally, a real-life application to a financial case is also performed.
引用
收藏
页码:5504 / 5534
页数:31
相关论文
共 50 条
  • [1] Estimation of extreme quantiles conditioning on multivariate critical layers
    Di Bernardino, E.
    Palacios-Rodriguez, F.
    [J]. ENVIRONMETRICS, 2016, 27 (03) : 158 - 168
  • [2] Improved estimation of extreme quantiles in the multivariate Lomax (Pareto II) distribution
    Petropoulos, C
    Kourouklis, S
    [J]. METRIKA, 2004, 60 (01) : 15 - 24
  • [3] Improved estimation of extreme quantiles in the multivariate Lomax (Pareto II) distribution
    Constantinos Petropoulos
    Stavros Kourouklis
    [J]. Metrika, 2004, 60 : 15 - 24
  • [4] Nonparametric estimation of multivariate quantiles
    Coblenz, M.
    Dyckerhoff, R.
    Grothe, O.
    [J]. ENVIRONMETRICS, 2018, 29 (02)
  • [5] Simulation and Estimation of Extreme Quantiles and Extreme Probabilities
    Guyader, Arnaud
    Hengartner, Nicolas
    Matzner-Lober, Eric
    [J]. APPLIED MATHEMATICS AND OPTIMIZATION, 2011, 64 (02): : 171 - 196
  • [6] Simulation and Estimation of Extreme Quantiles and Extreme Probabilities
    Arnaud Guyader
    Nicolas Hengartner
    Eric Matzner-Løber
    [J]. Applied Mathematics & Optimization, 2011, 64 : 171 - 196
  • [7] Nonparametric estimation of extreme conditional quantiles
    Beirlant, J
    De Wet, T
    Goegebeur, Y
    [J]. JOURNAL OF STATISTICAL COMPUTATION AND SIMULATION, 2004, 74 (08) : 567 - 580
  • [8] Extreme quantiles estimation for actuarial applications
    Delafosse, E
    Guillou, A
    [J]. COMPTES RENDUS MATHEMATIQUE, 2004, 339 (04) : 287 - 292
  • [9] THE ESTIMATION OF EXTREME QUANTILES IN LOGIT BIOASSAY
    MCLEISH, D
    TOSH, D
    [J]. BIOMETRIKA, 1983, 70 (03) : 625 - 632
  • [10] Wind Speed Extreme Quantiles Estimation
    Chiodo, E.
    [J]. 2013 4TH INTERNATIONAL CONFERENCE ON CLEAN ELECTRICAL POWER (ICCEP): RENEWABLE ENERGY RESOURCES IMPACT, 2013, : 760 - 765