On positive solutions for classes of p-Laplacian semipositone systems

被引:0
|
作者
Chhetri, M [1 ]
Hai, DD
Shivaji, R
机构
[1] Univ N Carolina, Dept Math Sci, Greensboro, NC 27402 USA
[2] Mississippi State Univ, Dept Math & Stat, Mississippi State, MS 39762 USA
关键词
p-Laplacian; systems; positive solutions;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study positive solutions for the system -Delta(p)u = lambdaf(v) in Omega -Delta(p)v = lambdag(u) in Omega u = 0 = v on partial derivativeOmega where lambda > 0 is a parameter, Deltap denotes the p-Laplacian operator defined by Deltap(z) := div(\delz\(p-2del)z) for p > 1 and Omega is a bounded domain with smooth boundary. Here f, g is an element of C[0,infinity) belong to a class of functions satisfying lim(z-->infinity) f(z)/z(p-1) = 0, lim(z-->infinity) g(z)/z(p-1) = 0. In particular, we discuss the existence of radial solutions for large lambda when Omega is an annulus. For a general bounded region Omega, we also discuss a non-existence result when f(0) < 0 and g(0) < 0.
引用
收藏
页码:1063 / 1071
页数:9
相关论文
共 50 条
  • [21] Positive solutions for the Neumann p-Laplacian
    Averna, Diego
    Papageorgiou, Nikolaos S.
    Tornatore, Elisabetta
    [J]. MONATSHEFTE FUR MATHEMATIK, 2018, 185 (04): : 557 - 573
  • [22] Positive solutions for the p-Laplacian in annuli
    Ercole, G
    Zumpano, A
    [J]. PROCEEDINGS OF THE ROYAL SOCIETY OF EDINBURGH SECTION A-MATHEMATICS, 2002, 132 : 595 - 610
  • [23] Positive solutions for the Neumann p-Laplacian
    Diego Averna
    Nikolaos S. Papageorgiou
    Elisabetta Tornatore
    [J]. Monatshefte für Mathematik, 2018, 185 : 557 - 573
  • [24] MULTIPLICITY OF POSITIVE SOLUTIONS FOR QUASILINEAR ELLIPTIC P-LAPLACIAN SYSTEMS
    Aghajani, Asadollah
    Shamshiri, Jamileh
    [J]. ELECTRONIC JOURNAL OF DIFFERENTIAL EQUATIONS, 2012,
  • [25] UNIQUENESS OF POSITIVE SOLUTIONS FOR NONLINEAR COOPERATIVE SYSTEMS WITH THE P-LAPLACIAN
    FLECKINGERPELLE, J
    TAKAC, P
    [J]. INDIANA UNIVERSITY MATHEMATICS JOURNAL, 1994, 43 (04) : 1227 - 1253
  • [26] POSITIVE SOLUTIONS OF SINGULAR MULTIPARAMETER p-LAPLACIAN ELLIPTIC SYSTEMS
    Feng, Meiqiang
    Zhang, Yichen
    [J]. DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B, 2022, 27 (02): : 1121 - 1147
  • [27] Some existence results of positive solutions for p-Laplacian systems
    Wang, Peng
    Ru, Yuanfang
    [J]. BOUNDARY VALUE PROBLEMS, 2019, 2019 (1)
  • [28] Positive solutions for a class of p-Laplacian systems with multiple parameters
    Ali, Jaffar
    Shivaji, R.
    [J]. JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2007, 335 (02) : 1013 - 1019
  • [29] Regular positive solutions to p-Laplacian systems on unbounded domain
    Ahammou, Abdelaziz
    Iskafi, Khalid
    [J]. ASIAN-EUROPEAN JOURNAL OF MATHEMATICS, 2014, 7 (03)
  • [30] Some existence results of positive solutions for p-Laplacian systems
    Peng Wang
    Yuanfang Ru
    [J]. Boundary Value Problems, 2019