POSITIVE SOLUTIONS OF SINGULAR MULTIPARAMETER p-LAPLACIAN ELLIPTIC SYSTEMS

被引:8
|
作者
Feng, Meiqiang [1 ]
Zhang, Yichen [1 ]
机构
[1] Beijing Informat Sci & Technol Univ, Sch Appl Sci, Beijing 100192, Peoples R China
来源
基金
北京市自然科学基金;
关键词
Singular p-Laplacian systems; positive solutions; uniqueness and ap-proximation; existence and asymptotic behavior; sub-sup ersolution method; BOUNDARY-VALUE-PROBLEMS; RADIAL SOLUTIONS; CONVEX SOLUTIONS; EXISTENCE; UNIQUENESS; MULTIPLICITY; EXTERIOR;
D O I
10.3934/dcdsb.2021083
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, by using the eigenvalue theory, the sub-sup ersolution method and the fixed point theory, we prove the existence, multiplicity, unique-ness, asymptotic behavior and approximation of positive solutions for singu-lar multiparameter p-Laplacian elliptic systems on nonlinearities with separate variables or without separate variables. Various nonexistence results of positive solutions are also studied.
引用
收藏
页码:1121 / 1147
页数:27
相关论文
共 50 条
  • [1] MULTIPLICITY OF POSITIVE SOLUTIONS FOR QUASILINEAR ELLIPTIC P-LAPLACIAN SYSTEMS
    Aghajani, Asadollah
    Shamshiri, Jamileh
    ELECTRONIC JOURNAL OF DIFFERENTIAL EQUATIONS, 2012,
  • [2] Positive solutions of multiparameter semipositone p-Laplacian problems
    Perera, Kanishka
    Shivaji, Ratnasingham
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2008, 338 (02) : 1397 - 1400
  • [3] POSITIVE SOLUTIONS TO THE p-LAPLACIAN WITH SINGULAR WEIGHTS
    王影
    罗党
    王明新
    ActaMathematicaScientia, 2012, 32 (03) : 1002 - 1020
  • [4] POSITIVE SOLUTIONS TO THE p-LAPLACIAN WITH SINGULAR WEIGHTS
    Wang Ying
    Luo Dang
    Wang Mingxin
    ACTA MATHEMATICA SCIENTIA, 2012, 32 (03) : 1002 - 1020
  • [5] Multiplicity of solutions for a singular p-laplacian elliptic equation
    Zhou, Wen-shu
    Wei, Xiao-dan
    ANNALES POLONICI MATHEMATICI, 2010, 99 (02) : 157 - 180
  • [6] EXISTENCE OF POSITIVE SOLUTIONS FOR QUASILINEAR ELLIPTIC SYSTEMS INVOLVING THE p-LAPLACIAN
    Shang, Xudong
    Zhang, Jihui
    ELECTRONIC JOURNAL OF DIFFERENTIAL EQUATIONS, 2009,
  • [7] Positive Radial Solutions for a Class of Singular p-Laplacian Systems in a Ball
    Hai, D. D.
    Williams, J. L.
    MEDITERRANEAN JOURNAL OF MATHEMATICS, 2015, 12 (03) : 791 - 801
  • [8] Positive Solutions for Non-cooperative Singular p-Laplacian Systems
    Hai, D. D.
    TOKYO JOURNAL OF MATHEMATICS, 2012, 35 (02) : 321 - 331
  • [9] Positive Radial Solutions for a Class of Singular p-Laplacian Systems in a Ball
    D. D. Hai
    J. L. Williams
    Mediterranean Journal of Mathematics, 2015, 12 : 791 - 801
  • [10] Positive solutions for nonlinear singular elliptic equations of p-Laplacian type with dependence on the gradient
    Liu, Zhenhai
    Motreanu, Dumitru
    Zeng, Shengda
    CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 2019, 58 (01)