Positive Radial Solutions for a Class of Singular p-Laplacian Systems in a Ball

被引:0
|
作者
Hai, D. D. [1 ]
Williams, J. L. [1 ]
机构
[1] Mississippi State Univ, Dept Math & Stat, Mississippi State, MS 39762 USA
关键词
p-Laplacian; systems; singular; positive radial solutions; asymptotically p-linear; LINEAR ELLIPTIC-SYSTEMS;
D O I
10.1007/s00009-014-0436-8
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We prove the existence and nonexistence of positive radial solutions for the system {-Delta(p)u(1) = h(1) (u(2)) + mu(1)f(1)(u(2)) in B, -Delta(p)u(2) = h(2) (u(1)) + mu(2)f(2)(u(1)) in B u(1) = u(2) = 0 on partial derivative B, where p > 1, Delta(p)u = div(vertical bar del(u)vertical bar(-2)del(u)) is the open unit ball in with f (i) asymptotically p-linear at a, and mu (i) are positive constants, i = 1, 2.
引用
收藏
页码:791 / 801
页数:11
相关论文
共 50 条
  • [1] Positive Radial Solutions for a Class of Singular p-Laplacian Systems in a Ball
    D. D. Hai
    J. L. Williams
    Mediterranean Journal of Mathematics, 2015, 12 : 791 - 801
  • [2] Analysis of positive radial solutions for singular superlinear p-Laplacian systems on the exterior of a ball
    Son, Byungjae
    Wang, Peiyong
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2020, 192
  • [3] Positive Radial Solutions for p-Laplacian Equations in A Ball
    Gao, Yunzhu
    Su, Ning
    PROCEEDINGS OF FIRST INTERNATIONAL CONFERENCE OF MODELLING AND SIMULATION, VOL II: MATHEMATICAL MODELLING, 2008, : 287 - 291
  • [4] Positive radial solutions for p-Laplacian systems
    O'Regan, Donal
    Wang, Haiyan
    AEQUATIONES MATHEMATICAE, 2008, 75 (1-2) : 43 - 50
  • [5] Positive radial solutions for p-Laplacian systems
    Donal O’Regan
    Haiyan Wang
    Aequationes mathematicae, 2008, 75 : 43 - 50
  • [6] Existence of positive solutions of singular p-Laplacian equations in a ball
    Li, Fang
    Yang, Zuodong
    JOURNAL OF NONLINEAR SCIENCES AND APPLICATIONS, 2012, 5 (01): : 44 - 55
  • [7] UNIQUENESS OF POSITIVE RADIAL SOLUTIONS FOR A CLASS OF INFINITE SEMIPOSITONE p-LAPLACIAN PROBLEMS IN A BALL
    Chu, K. D.
    Hai, D. D.
    Shivaji, R.
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2020, 148 (05) : 2059 - 2067
  • [8] POSITIVE SOLUTIONS FOR A CLASS OF SINGULAR SEMIPOSITONE p-LAPLACIAN PROBLEMS
    Hai, D. D.
    DIFFERENTIAL AND INTEGRAL EQUATIONS, 2007, 20 (01) : 51 - 62
  • [9] Positive radial solutions for a class of (p, q) Laplacian in a ball
    Hai, D. D.
    Shivaji, R.
    Wang, X.
    POSITIVITY, 2023, 27 (01)
  • [10] Positive radial solutions for a class of (p, q) Laplacian in a ball
    D. D. Hai
    R. Shivaji
    X. Wang
    Positivity, 2023, 27