Positive radial solutions for a class of (p, q) Laplacian in a ball

被引:2
|
作者
Hai, D. D. [1 ]
Shivaji, R. [2 ]
Wang, X. [3 ]
机构
[1] Mississippi State Univ, Dept Math & Stat, Mississippi State, MS 39762 USA
[2] Univ North Cartolina Greensboro, Dept Math & Stat, Greensboro, NC 27402 USA
[3] Jiangsu Univ, Inst Appl Syst Anal, Zhenjiang 212013, Jiangsu, Peoples R China
关键词
(p; q); Laplacian; Infinite semipositone; Positive solutions; EXISTENCE; EQUATION;
D O I
10.1007/s11117-022-00959-1
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We prove the existence of a positive radial solution to the (p, q) Laplacian problem {-Delta(p)u - Delta(q)u = lambda f(u) in Omega, u = 0 on partial derivative Omega, where p > q > 1, Delta(r)u = div(vertical bar Delta u vertical bar(r-2)del u), Omega = B(0, 1) is the open unit ball in R-n, f:(0, infinity) -> R is p-sublinear at infinity with possible singularity and infinite semipositone structure at 0, and lambda > 0 is a large parameter.
引用
收藏
页数:8
相关论文
共 50 条
  • [1] Positive radial solutions for a class of (p, q) Laplacian in a ball
    D. D. Hai
    R. Shivaji
    X. Wang
    Positivity, 2023, 27
  • [2] Positive Radial Solutions for a Class of Singular p-Laplacian Systems in a Ball
    Hai, D. D.
    Williams, J. L.
    MEDITERRANEAN JOURNAL OF MATHEMATICS, 2015, 12 (03) : 791 - 801
  • [3] Positive Radial Solutions for a Class of Singular p-Laplacian Systems in a Ball
    D. D. Hai
    J. L. Williams
    Mediterranean Journal of Mathematics, 2015, 12 : 791 - 801
  • [4] Positive Radial Solutions for p-Laplacian Equations in A Ball
    Gao, Yunzhu
    Su, Ning
    PROCEEDINGS OF FIRST INTERNATIONAL CONFERENCE OF MODELLING AND SIMULATION, VOL II: MATHEMATICAL MODELLING, 2008, : 287 - 291
  • [5] UNIQUENESS OF POSITIVE RADIAL SOLUTIONS FOR A CLASS OF INFINITE SEMIPOSITONE p-LAPLACIAN PROBLEMS IN A BALL
    Chu, K. D.
    Hai, D. D.
    Shivaji, R.
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2020, 148 (05) : 2059 - 2067
  • [6] Radial Positive Solutions for (p(x),q(x))-Laplacian Systems
    Zitouni, Mohamed
    Djellit, Ali
    Ghannam, Lahcen
    BOLETIM SOCIEDADE PARANAENSE DE MATEMATICA, 2023, 41
  • [8] Existence Of Positive Radial Solutions For (p (x) , q (x))-Laplacian Systems
    Guefaifia, Rafik
    Boulaaras, Salah
    APPLIED MATHEMATICS E-NOTES, 2018, 18 : 209 - 218
  • [9] On the existence of positive solutions for a class of (p(x), q(x))-Laplacian system
    Ghaemi, M. B.
    Afrouzi, G. A.
    Rasouli, S. H.
    Choubin, M.
    APPLIED MATHEMATICS LETTERS, 2013, 26 (03) : 367 - 372
  • [10] Nonexistence of positive entire solutions for a class of (p, q)-Laplacian elliptic systems
    Chen, Caisheng
    Shi, Lanfang
    Zhu, Shenglan
    APPLIED MATHEMATICS LETTERS, 2011, 24 (06) : 831 - 837