Levy processes conditioned to stay positive

被引:0
|
作者
机构
来源
关键词
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
引用
收藏
页码:81 / 93
页数:13
相关论文
共 50 条
  • [1] On levy processes conditioned to stay positive.
    Chaumont, L
    Doney, RA
    [J]. ELECTRONIC JOURNAL OF PROBABILITY, 2005, 10 : 948 - 961
  • [2] Bridges of Levy processes conditioned to stay positive
    Uribe Bravo, Geronimo
    [J]. BERNOULLI, 2014, 20 (01) : 190 - 206
  • [3] ON THE RATE OF GROWTH OF LEVY PROCESSES WITH NOPOSITIVE JUMPS CONDITIONED TO STAY POSITIVE
    Pardo, J. C.
    [J]. ELECTRONIC COMMUNICATIONS IN PROBABILITY, 2008, 13 : 494 - 506
  • [4] On Levy processes conditioned to stay positive (vol 13, pg 1, 2008)
    Chaumont, L.
    Doney, R. A.
    [J]. ELECTRONIC JOURNAL OF PROBABILITY, 2008, 13
  • [5] Exponential functionals of spectrally one-sided Levy processes conditioned to stay positive
    Vechambre, Gregoire
    [J]. ANNALES DE L INSTITUT HENRI POINCARE-PROBABILITES ET STATISTIQUES, 2019, 55 (02): : 620 - 660
  • [6] Levy processes conditioned to stay in a half-space with applications to directional extremes
    Ivanovs, Jevgenijs
    Thostesen, Jakob D.
    [J]. MODERN STOCHASTICS-THEORY AND APPLICATIONS, 2023, 10 (01): : 59 - 75
  • [7] Conditioned random walks and Levy processes
    Doney, R. A.
    Jones, E. M.
    [J]. BULLETIN OF THE LONDON MATHEMATICAL SOCIETY, 2012, 44 : 139 - 150
  • [8] On Levy processes conditioned to avoid zero
    Panti, Henry
    [J]. ALEA-LATIN AMERICAN JOURNAL OF PROBABILITY AND MATHEMATICAL STATISTICS, 2017, 14 (02): : 657 - 690
  • [9] Random walk conditioned to stay positive
    Biggins, JD
    [J]. JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 2003, 67 : 259 - 272
  • [10] Conditioned Point Processes with Application to Levy Bridges
    Conforti, Giovanni
    Kosenkova, Tetiana
    Roelly, Sylvie
    [J]. JOURNAL OF THEORETICAL PROBABILITY, 2019, 32 (04) : 2111 - 2134