Random walk conditioned to stay positive

被引:13
|
作者
Biggins, JD [1 ]
机构
[1] Univ Sheffield, Dept Probabil & Stat, Sheffield S3 7RH, S Yorkshire, England
关键词
D O I
10.1112/S0024610702003708
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
引用
收藏
页码:259 / 272
页数:14
相关论文
共 50 条
  • [1] An invariance principle for random walk bridges conditioned to stay positive
    Caravenna, Francesco
    Chaumont, Loic
    [J]. ELECTRONIC JOURNAL OF PROBABILITY, 2013, 18 : 1 - 32
  • [2] Local probabilities for random walks conditioned to stay positive
    Vatutin, Vladimir A.
    Wachtel, Vitali
    [J]. PROBABILITY THEORY AND RELATED FIELDS, 2009, 143 (1-2) : 177 - 217
  • [3] GROWTH OF RANDOM-WALKS CONDITIONED TO STAY POSITIVE
    RITTER, GA
    [J]. ANNALS OF PROBABILITY, 1981, 9 (04): : 699 - 704
  • [4] Invariance principles for random walks conditioned to stay positive
    Caravenna, Francesco
    Chaumont, Loic
    [J]. ANNALES DE L INSTITUT HENRI POINCARE-PROBABILITES ET STATISTIQUES, 2008, 44 (01): : 170 - 190
  • [5] Local probabilities for random walks conditioned to stay positive
    Vladimir A. Vatutin
    Vitali Wachtel
    [J]. Probability Theory and Related Fields, 2009, 143 : 177 - 217
  • [6] A local limit theorem for random walks conditioned to stay positive
    Francesco Caravenna
    [J]. Probability Theory and Related Fields, 2005, 133 : 508 - 530
  • [7] Large deviation results for random walks conditioned to stay positive
    Doney, Ronald A.
    Jones, Elinor M.
    [J]. ELECTRONIC COMMUNICATIONS IN PROBABILITY, 2012, 17 : 1 - 11
  • [8] A local limit theorem for random walks conditioned to stay positive
    Caravenna, F
    [J]. PROBABILITY THEORY AND RELATED FIELDS, 2005, 133 (04) : 508 - 530
  • [9] RANDOM-WALKS WITH NEGATIVE DRIFT CONDITIONED TO STAY POSITIVE
    IGLEHART, DL
    [J]. JOURNAL OF APPLIED PROBABILITY, 1974, 11 (04) : 742 - 751
  • [10] A functional limit theorem for random walk conditioned to stay non-negative
    Bryn-Jones, A.
    Doney, R. A.
    [J]. JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 2006, 74 : 244 - 258