THE ORLICZ MINKOWSKI PROBLEM FOR GENERAL MEASURES

被引:4
|
作者
Xie, Fengfan [1 ]
机构
[1] Wuhan Univ Sci & Technol, Coll Sci, Wuhan 430065, Hubei, Peoples R China
关键词
FIREY THEORY; AFFINE; REGULARITY; BODIES;
D O I
10.1090/proc/14722
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The existence of a solution to the volume normalized Orlicz Minkowski problem is proved for general measures. This solves a limit case of Lutwak-Yang-Zhang's existence theorem to the problem.
引用
收藏
页码:4433 / 4445
页数:13
相关论文
共 50 条
  • [21] On the polar Orlicz Minkowski type problem for the general mixed p-capacity
    Li, Hai
    Hu, Zejun
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2023, 522 (01)
  • [22] SUMS OF SECTIONS, SURFACE AREA MEASURES, AND THE GENERAL MINKOWSKI PROBLEM
    Goodey, Paul
    Weil, Wolfgang
    JOURNAL OF DIFFERENTIAL GEOMETRY, 2014, 97 (03) : 477 - 514
  • [23] Existence of solutions to the Orlicz-Minkowski problem
    Jian, Huaiyu
    Lu, Jian
    ADVANCES IN MATHEMATICS, 2019, 344 : 262 - 288
  • [24] The Orlicz-Minkowski problem for torsional rigidity
    Li, Ni
    Zhu, Baocheng
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2020, 269 (10) : 8549 - 8572
  • [25] The Lp electrostatic q-capacitary Minkowski problem for general measures
    Feng, Yibin
    Zhou, Yanping
    He, Binwu
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2020, 487 (01)
  • [26] The Orlicz Minkowski problem for cone-volume measure
    Xie, Fengfan
    ADVANCES IN APPLIED MATHEMATICS, 2023, 149
  • [27] The Orlicz Electrostatic q-Capacity Minkowski Problem
    Zeng, Hui
    Liu, Lijuan
    Yin, Lu
    He, Rigao
    AXIOMS, 2025, 14 (02)
  • [28] On the existence of solutions to the Orlicz–Minkowski problem for torsional rigidity
    Zejun Hu
    Hai Li
    Archiv der Mathematik, 2023, 120 : 543 - 555
  • [29] The Orlicz Minkowski problem for the electrostatic p-capacity
    Xiong, Ge
    Xiong, Jiawei
    ADVANCES IN APPLIED MATHEMATICS, 2022, 137
  • [30] Inverse Gauss Curvature Flows and Orlicz Minkowski Problem
    Bin Chen
    Cui, Jingshi
    Zhao, Peibiao
    ANALYSIS AND GEOMETRY IN METRIC SPACES, 2022, 10 (01): : 330 - 343