On the existence of solutions to the Orlicz–Minkowski problem for torsional rigidity

被引:0
|
作者
Zejun Hu
Hai Li
机构
[1] Zhengzhou University,School of Mathematics and Statistics
来源
Archiv der Mathematik | 2023年 / 120卷
关键词
Convex body; Orlicz–Minkowski problem; Torsional rigidity; 52A20; 52A40;
D O I
暂无
中图分类号
学科分类号
摘要
In [J Diff Equ, 269: 8549–8572, 2020], Li and Zhu studied the Orlicz–Minkowski problem for torsional rigidity, and among other things, they proved the existence of solutions to the problem regarding a continuous function φ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varphi $$\end{document} satisfying limx→0+φ(x)=∞\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\lim _{x\rightarrow 0^+}\varphi (x)=\infty $$\end{document}. In this paper, with the motivation of complementing their results, we prove a new existence of solutions to the problem regarding a strictly increasing, continuously differentiable function φ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varphi $$\end{document} satisfying limx→0+φ(x)=0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\lim _{x\rightarrow 0^+}\varphi (x)=0$$\end{document}.
引用
收藏
页码:543 / 555
页数:12
相关论文
共 50 条
  • [1] On the existence of solutions to the Orlicz-Minkowski problem for torsional rigidity
    Hu, Zejun
    Li, Hai
    ARCHIV DER MATHEMATIK, 2023, 120 (05) : 543 - 555
  • [2] The Orlicz-Minkowski problem for torsional rigidity
    Li, Ni
    Zhu, Baocheng
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2020, 269 (10) : 8549 - 8572
  • [3] A Gauss Curvature Flow to the Orlicz–Minkowski Problem for Torsional Rigidity
    Jinrong Hu
    Jiaqian Liu
    Di Ma
    The Journal of Geometric Analysis, 2022, 32
  • [4] Existence of solutions to the Orlicz-Minkowski problem
    Jian, Huaiyu
    Lu, Jian
    ADVANCES IN MATHEMATICS, 2019, 344 : 262 - 288
  • [5] A Gauss Curvature Flow to the Orlicz-Minkowski Problem for Torsional Rigidity
    Hu, Jinrong
    Liu, Jiaqian
    Ma, Di
    JOURNAL OF GEOMETRIC ANALYSIS, 2022, 32 (02)
  • [6] The Minkowski Problem for Torsional Rigidity
    Colesanti, Andrea
    Fimiani, Michele
    INDIANA UNIVERSITY MATHEMATICS JOURNAL, 2010, 59 (03) : 1013 - 1039
  • [7] Existence of Smooth Even Solutions to the Dual Orlicz–Minkowski Problem
    Li Chen
    YanNan Liu
    Jian Lu
    Ni Xiang
    The Journal of Geometric Analysis, 2022, 32
  • [8] Existence of Smooth Even Solutions to the Dual Orlicz-Minkowski Problem
    Chen, Li
    Liu, YanNan
    Lu, Jian
    Xiang, Ni
    JOURNAL OF GEOMETRIC ANALYSIS, 2022, 32 (02)
  • [9] The Extreme Problem for Orlicz and Lq Torsional Rigidity and their Properties
    Wei, Zhenzhen
    Yang, Jin
    FILOMAT, 2021, 35 (12) : 4033 - 4048
  • [10] The Lp Minkowski problem for q-torsional rigidity
    Chen, Bin
    Zhao, Xia
    Wang, Weidong
    Zhao, Peibiao
    ADVANCES IN CALCULUS OF VARIATIONS, 2024, 17 (03) : 587 - 603