On the existence of solutions to the Orlicz–Minkowski problem for torsional rigidity

被引:0
|
作者
Zejun Hu
Hai Li
机构
[1] Zhengzhou University,School of Mathematics and Statistics
来源
Archiv der Mathematik | 2023年 / 120卷
关键词
Convex body; Orlicz–Minkowski problem; Torsional rigidity; 52A20; 52A40;
D O I
暂无
中图分类号
学科分类号
摘要
In [J Diff Equ, 269: 8549–8572, 2020], Li and Zhu studied the Orlicz–Minkowski problem for torsional rigidity, and among other things, they proved the existence of solutions to the problem regarding a continuous function φ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varphi $$\end{document} satisfying limx→0+φ(x)=∞\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\lim _{x\rightarrow 0^+}\varphi (x)=\infty $$\end{document}. In this paper, with the motivation of complementing their results, we prove a new existence of solutions to the problem regarding a strictly increasing, continuously differentiable function φ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varphi $$\end{document} satisfying limx→0+φ(x)=0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\lim _{x\rightarrow 0^+}\varphi (x)=0$$\end{document}.
引用
收藏
页码:543 / 555
页数:12
相关论文
共 50 条
  • [21] EXISTENCE OF SOLUTIONS TO THE EVEN DUAL MINKOWSKI PROBLEM
    Zhao, Yiming
    JOURNAL OF DIFFERENTIAL GEOMETRY, 2018, 110 (03) : 543 - 572
  • [22] On the Orlicz Minkowski Problem for Polytopes
    Huang, Qingzhong
    He, Binwu
    DISCRETE & COMPUTATIONAL GEOMETRY, 2012, 48 (02) : 281 - 297
  • [23] The even Orlicz Minkowski problem
    Haberl, Christoph
    Lutwak, Erwin
    Yang, Deane
    Zhang, Gaoyong
    ADVANCES IN MATHEMATICS, 2010, 224 (06) : 2485 - 2510
  • [24] The Dual Orlicz–Minkowski Problem
    Baocheng Zhu
    Sudan Xing
    Deping Ye
    The Journal of Geometric Analysis, 2018, 28 : 3829 - 3855
  • [25] On the Orlicz Minkowski Problem for Polytopes
    Qingzhong Huang
    Binwu He
    Discrete & Computational Geometry, 2012, 48 : 281 - 297
  • [26] ON THE DISCRETE ORLICZ MINKOWSKI PROBLEM
    Wu, Yuchi
    Xi, Dongmeng
    Leng, Gangsong
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2019, 371 (03) : 1795 - 1814
  • [27] Existence of solutions to the even Gaussian dual Minkowski problem
    Feng, Yibin
    Hu, Shengnan
    Xu, Lei
    ADVANCES IN APPLIED MATHEMATICS, 2025, 163
  • [28] On the discrete Orlicz Minkowski problem II
    Yuchi Wu
    Dongmeng Xi
    Gangsong Leng
    Geometriae Dedicata, 2020, 205 : 177 - 190
  • [29] On the Orlicz Minkowski problem for logarithmic capacity
    Hu, Zejun
    Li, Hai
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2022, 510 (01)
  • [30] THE ORLICZ MINKOWSKI PROBLEM FOR GENERAL MEASURES
    Xie, Fengfan
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2022, 150 (10) : 4433 - 4445