On the finite time singularities for a class of Degasperis-Procesi equations

被引:3
|
作者
Wu, Xinglong [1 ]
机构
[1] Wuhan Univ Technol, Sch Sci, Dept Math, Wuhan 430070, Hubei, Peoples R China
关键词
A class of Degasperis-Procesi equations; Local well-posedness; Finite time singularities; The lifespan of solution; PERIODIC INTEGRABLE EQUATION; BLOW-UP PHENOMENA; PEAKON SOLUTIONS; GLOBAL EXISTENCE; CAUCHY-PROBLEM; SHOCK-WAVES; WATER-WAVES;
D O I
10.1016/j.nonrwa.2018.04.005
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
As we all know, the conservation laws take an important part in deriving wave breaking for Degasperis-Procesi (DP) type equation. In the article, we give a new method to study singularities in finite time for a class of DP equations with high nonlinear terms. The paper tells us that the result of wave breaking can be established without the conservation law. (C) 2018 Elsevier Ltd. All rights reserved.
引用
收藏
页码:1 / 17
页数:17
相关论文
共 50 条
  • [31] Degasperis-Procesi方程的衰减估计
    赵国喜
    王宏伟
    [J]. 烟台大学学报(自然科学与工程版), 2011, 24 (04) : 258 - 259
  • [32] On the peakon inverse problem for the Degasperis-Procesi equation
    Mohajer, Keivan
    [J]. JOURNAL OF INVERSE AND ILL-POSED PROBLEMS, 2017, 25 (02): : 149 - 156
  • [33] Optimal control of the viscous Degasperis-Procesi equation
    Tian, Lixin
    Shen, Chunyu
    [J]. JOURNAL OF MATHEMATICAL PHYSICS, 2007, 48 (11)
  • [34] Bäcklund Transformations for the Degasperis-Procesi Equation
    Hui Mao
    Gaihua Wang
    [J]. Theoretical and Mathematical Physics, 2020, 203 : 747 - 760
  • [35] Highest waves for fractional Korteweg-De Vries and Degasperis-Procesi equations
    Orke, Magnus C.
    [J]. ARKIV FOR MATEMATIK, 2024, 62 (01): : 153 - 190
  • [36] ON WELL-POSEDNESS OF THE DEGASPERIS-PROCESI EQUATION
    Himonas, A. Alexandrou
    Holliman, Curtis
    [J]. DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2011, 31 (02) : 469 - 488
  • [37] Weak solution for stochastic Degasperis-Procesi equation
    Chemetov, Nikolai V.
    Cipriano, Fernanda
    [J]. JOURNAL OF DIFFERENTIAL EQUATIONS, 2024, 382 : 1 - 49
  • [38] Reformulation of Degasperis-Procesi Field by Functional Derivatives
    Alawaideh, Y. M.
    Hijjawi, R. S.
    Khalifeh, J. M.
    [J]. JORDAN JOURNAL OF PHYSICS, 2020, 13 (01): : 67 - 72
  • [39] The Degasperis-Procesi equation on the half-line
    Lenells, Jonatan
    [J]. NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2013, 76 : 122 - 139
  • [40] Degasperis-Procesi peakons and the discrete cubic string
    Lundmark, H
    Szmigielski, J
    [J]. INTERNATIONAL MATHEMATICS RESEARCH PAPERS, 2005, (02): : 53 - 116