Highest waves for fractional Korteweg-De Vries and Degasperis-Procesi equations

被引:0
|
作者
Orke, Magnus C. [1 ]
机构
[1] Univ Oslo, Dept Math, Oslo, Norway
来源
ARKIV FOR MATEMATIK | 2024年 / 62卷 / 01期
关键词
MAXIMAL HEIGHT;
D O I
10.4310/ARKIV.2024.v62.n1.a9
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We study traveling waves for a class of fractional Korteweg-De Vries and fractional Degasperis-Procesi equations with a parametrized Fourier multiplier operator of order -SE (-1, 0). For both equations there exist local analytic bifurcation branches emanating from a curve of constant solutions, consisting of smooth, even and periodic traveling waves. The local branches extend to global solution curves. In the limit we find a highest, cusped traveling-wave solution and prove its optimal S-H & ouml;lder regularity, attained in the cusp.
引用
收藏
页码:153 / 190
页数:38
相关论文
共 50 条
  • [1] Decay of solitary waves of fractional Korteweg-de Vries type equations
    Eychenne, Arnaud
    Valet, Frederic
    [J]. JOURNAL OF DIFFERENTIAL EQUATIONS, 2023, 363 : 243 - 274
  • [2] The functional variable method for solving the fractional Korteweg-de Vries equations and the coupled Korteweg-de Vries equations
    Matinfar, M.
    Eslami, M.
    Kordy, M.
    [J]. PRAMANA-JOURNAL OF PHYSICS, 2015, 85 (04): : 583 - 592
  • [3] Numerical Studies of the Fractional Korteweg-de Vries, Korteweg-de Vries-Burgers' and Burgers' Equations
    Khader, M. M.
    Saad, Khaled M.
    [J]. PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES INDIA SECTION A-PHYSICAL SCIENCES, 2021, 91 (01) : 67 - 77
  • [4] Numerical Studies of the Fractional Korteweg-de Vries, Korteweg-de Vries-Burgers’ and Burgers’ Equations
    M. M. Khader
    Khaled M. Saad
    [J]. Proceedings of the National Academy of Sciences, India Section A: Physical Sciences, 2021, 91 : 67 - 77
  • [5] On the modified fractional Korteweg-de Vries and related equations
    Klein, Christian
    Saut, Jean-Claude
    Wang, Yuexun
    [J]. NONLINEARITY, 2022, 35 (03) : 1170 - 1212
  • [6] New fractional derivatives applied to the Korteweg-de Vries and Korteweg-de Vries-Burger's equations
    Saad, Khaled M.
    Baleanu, Dumitru
    Atangana, Abdon
    [J]. COMPUTATIONAL & APPLIED MATHEMATICS, 2018, 37 (04): : 5203 - 5216
  • [7] Periodic Waves in the Fractional Modified Korteweg-de Vries Equation
    Natali, Fabio
    Le, Uyen
    Pelinovsky, Dmitry E.
    [J]. JOURNAL OF DYNAMICS AND DIFFERENTIAL EQUATIONS, 2022, 34 (02) : 1601 - 1640
  • [8] Numerical inverse scattering for the Korteweg-de Vries and modified Korteweg-de Vries equations
    Trogdon, Thomas
    Olver, Sheehan
    Deconinck, Bernard
    [J]. PHYSICA D-NONLINEAR PHENOMENA, 2012, 241 (11) : 1003 - 1025
  • [9] Integrability of reductions of the discrete Korteweg-de Vries and potential Korteweg-de Vries equations
    Hone, A. N. W.
    van der Kamp, P. H.
    Quispel, G. R. W.
    Tran, D. T.
    [J]. PROCEEDINGS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2013, 469 (2154):
  • [10] Travelling waves for two coupled Korteweg-de Vries equations
    Barrera, F. P.
    Brugarino, T.
    [J]. ADVANCES IN FLUID MECHANICS VII, 2008, 59 : 477 - 480