Using clustering techniques to improve the performance of a multi-objective particle swarm optimizer

被引:0
|
作者
Pulido, GT [1 ]
Coello, CAC [1 ]
机构
[1] CINVESTAV, IPN, Evolutionary Computat Grp, Dept Ing Elect,Secc Computat, Mexico City 07300, DF, Mexico
关键词
D O I
暂无
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
In this paper, we present an extension of the heuristic called "particle swarm optimization" (PSO) that is able to deal with multiobjective optimization problems. Our approach uses the concept of Pareto dominance to determine the flight direction of a particle and is based on the idea of having a set of subswarms instead of single particles. In each sub-swarm, a PSO algorithm is executed and, at some point, the different sub-swarms exchange information. Our proposed approach is validated using several test functions taken from the evolutionary multiobjective optimization literature. Our results indicate that the approach is highly competitive with respect to algorithms representative of the state-of-the-art in evolutionary multiobjective optimization.
引用
收藏
页码:225 / 237
页数:13
相关论文
共 50 条
  • [1] A Particle Swarm Optimizer for Multi-Objective Optimization
    Cagnina, Leticia
    Esquivel, Susana
    Coello Coello, Carlos A.
    [J]. JOURNAL OF COMPUTER SCIENCE & TECHNOLOGY, 2005, 5 (04): : 204 - 210
  • [2] An improved multi-objective particle swarm optimizer for multi-objective problems
    Tsai, Shang-Jeng
    Sun, Tsung-Ying
    Liu, Chan-Cheng
    Hsieh, Sheng-Ta
    Wu, Wun-Ci
    Chiu, Shih-Yuan
    [J]. EXPERT SYSTEMS WITH APPLICATIONS, 2010, 37 (08) : 5872 - 5886
  • [3] A scalable coevolutionary multi-objective particle swarm optimizer
    Zheng, Xiangwei
    Liu, Hong
    [J]. INTERNATIONAL JOURNAL OF COMPUTATIONAL INTELLIGENCE SYSTEMS, 2010, 3 (05) : 590 - 600
  • [4] A scalable coevolutionary multi-objective particle swarm optimizer
    Zheng X.
    Liu H.
    [J]. International Journal of Computational Intelligence Systems, 2010, 3 (5) : 590 - 600
  • [5] A Niche Based Multi-objective Particle Swarm Optimizer
    Guo, Jinglei
    Shao, Miaomiao
    Jiang, Shouyong
    Zhou, Xinyu
    [J]. 2021 IEEE CONGRESS ON EVOLUTIONARY COMPUTATION (CEC 2021), 2021, : 1319 - 1326
  • [6] A Multi-objective Particle Swarm Optimizer Based on Decomposition
    Zapotecas Martinez, Saul
    Coello Coello, Carlos A.
    [J]. GECCO-2011: PROCEEDINGS OF THE 13TH ANNUAL GENETIC AND EVOLUTIONARY COMPUTATION CONFERENCE, 2011, : 69 - 76
  • [7] A multi-objective interactive dynamic particle swarm optimizer
    Barba-Gonzalez, Cristobal
    Nebro, Antonio J.
    Garcia-Nieto, Jose
    Aldana-Montes, Jose F.
    [J]. PROGRESS IN ARTIFICIAL INTELLIGENCE, 2020, 9 (01) : 55 - 65
  • [8] A Proposal of a Multi-Objective Compact Particle Swarm Optimizer
    Jimenez Montiel, Jorge
    Coello Coello, Carlos A.
    Castillo Tapia, Ma. Guadalupe
    [J]. 2019 IEEE SYMPOSIUM SERIES ON COMPUTATIONAL INTELLIGENCE (IEEE SSCI 2019), 2019, : 2269 - 2278
  • [9] A multi-objective interactive dynamic particle swarm optimizer
    Cristóbal Barba-González
    Antonio J. Nebro
    José García-Nieto
    José F. Aldana-Montes
    [J]. Progress in Artificial Intelligence, 2020, 9 : 55 - 65
  • [10] Multi-Objective Optimization Problems Using Cooperative Evolvement Particle Swarm Optimizer
    Zhang, Yong
    Gong, Dun-Wei
    Gong, Na
    [J]. JOURNAL OF COMPUTATIONAL AND THEORETICAL NANOSCIENCE, 2013, 10 (03) : 655 - 663