A multi-objective interactive dynamic particle swarm optimizer

被引:3
|
作者
Barba-Gonzalez, Cristobal [1 ]
Nebro, Antonio J. [1 ]
Garcia-Nieto, Jose [1 ]
Aldana-Montes, Jose F. [1 ]
机构
[1] Univ Malaga, Dept Lenguajes & Ciencias Computac, Bulevar Louis Pasteur 35, E-29071 Malaga, Spain
关键词
Multi-objective optimization; Particle swarm optimization; Interactive decision making; Dynamic optimization problem; Comparative study;
D O I
10.1007/s13748-019-00198-8
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Multi-objective optimization deals with problems having two or more conflicting objectives that have to be optimized simultaneously. When the objectives change somehow with time, the problems become dynamic, and if the decision maker indicates preferences at runtime, then the algorithms to solve them become interactive. In this paper, we propose the integration of SMPSO/RP, an interactive multi-objective particle swarm optimizer based on SMPSO, with InDM2, an algorithmic template for dynamic interactive optimization with metaheuristics. The result is SMPSO/RPD, an algorithm that provides the search capabilities of SMPSO, incorporates an interactive preference articulation mechanism based on defining one or more reference points, and is able to deal with dynamic problems. We conduct a qualitative study showing the working of SMPSO/RPD on three benchmark problems, remaining a qualitative analysis as an open line of future research.
引用
收藏
页码:55 / 65
页数:11
相关论文
共 50 条
  • [1] A multi-objective interactive dynamic particle swarm optimizer
    Cristóbal Barba-González
    Antonio J. Nebro
    José García-Nieto
    José F. Aldana-Montes
    [J]. Progress in Artificial Intelligence, 2020, 9 : 55 - 65
  • [2] A Particle Swarm Optimizer for Multi-Objective Optimization
    Cagnina, Leticia
    Esquivel, Susana
    Coello Coello, Carlos A.
    [J]. JOURNAL OF COMPUTER SCIENCE & TECHNOLOGY, 2005, 5 (04): : 204 - 210
  • [3] An improved multi-objective particle swarm optimizer for multi-objective problems
    Tsai, Shang-Jeng
    Sun, Tsung-Ying
    Liu, Chan-Cheng
    Hsieh, Sheng-Ta
    Wu, Wun-Ci
    Chiu, Shih-Yuan
    [J]. EXPERT SYSTEMS WITH APPLICATIONS, 2010, 37 (08) : 5872 - 5886
  • [4] A scalable coevolutionary multi-objective particle swarm optimizer
    Zheng, Xiangwei
    Liu, Hong
    [J]. INTERNATIONAL JOURNAL OF COMPUTATIONAL INTELLIGENCE SYSTEMS, 2010, 3 (05) : 590 - 600
  • [5] A Multi-objective Particle Swarm Optimizer Based on Decomposition
    Zapotecas Martinez, Saul
    Coello Coello, Carlos A.
    [J]. GECCO-2011: PROCEEDINGS OF THE 13TH ANNUAL GENETIC AND EVOLUTIONARY COMPUTATION CONFERENCE, 2011, : 69 - 76
  • [6] A scalable coevolutionary multi-objective particle swarm optimizer
    Zheng X.
    Liu H.
    [J]. International Journal of Computational Intelligence Systems, 2010, 3 (5) : 590 - 600
  • [7] A Niche Based Multi-objective Particle Swarm Optimizer
    Guo, Jinglei
    Shao, Miaomiao
    Jiang, Shouyong
    Zhou, Xinyu
    [J]. 2021 IEEE CONGRESS ON EVOLUTIONARY COMPUTATION (CEC 2021), 2021, : 1319 - 1326
  • [8] A Proposal of a Multi-Objective Compact Particle Swarm Optimizer
    Jimenez Montiel, Jorge
    Coello Coello, Carlos A.
    Castillo Tapia, Ma. Guadalupe
    [J]. 2019 IEEE SYMPOSIUM SERIES ON COMPUTATIONAL INTELLIGENCE (IEEE SSCI 2019), 2019, : 2269 - 2278
  • [9] A Particle Swarm Optimizer with adaptive dynamic neighborhood for multimodal multi-objective optimization
    Wei, Jingyue
    Zhang, Enze
    Ge, Rui
    [J]. 2023 35TH CHINESE CONTROL AND DECISION CONFERENCE, CCDC, 2023, : 1073 - 1078
  • [10] EMOPSO: A multi-objective particle swarm optimizer with emphasis on efficiency
    Toscano-Pulido, Gregorio
    Coello, Carlos A. Coello
    Santana-Quintero, Luis Vicente
    [J]. EVOLUTIONARY MULTI-CRITERION OPTIMIZATION, PROCEEDINGS, 2007, 4403 : 272 - +