A Particle Swarm Optimizer with adaptive dynamic neighborhood for multimodal multi-objective optimization

被引:0
|
作者
Wei, Jingyue [1 ]
Zhang, Enze [1 ]
Ge, Rui [1 ]
机构
[1] Yangzhou Univ, Informat Engn Coll, Yangzhou, Jiangsu, Peoples R China
关键词
Multi-objective optimization; multimodal multi-objective optimization; particle swarm optimization algorithm; sub-swarm regrouping; ring topology;
D O I
10.1109/CCDC58219.2023.10326985
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In this paper, a multi-objective particle swarm optimizer based on adaptive dynamic neighborhood (ADN-MOPSO) is proposed to locate multiple Pareto optimal solutions to solve multimodal multi-objective problems. In the proposed algorithm, a spatial distance-based non-overlapping ring topology is used to form multiple subpopulations for parallel search to enhance the local search capability of the algorithm. In addition, an adaptive dynamic neighborhood selection strategy is proposed to balance the exploration and exploitation capabilities of the algorithm, allowing the size of the subpopulation to change automatically when the neighborhood switch time is met. To prevent the algorithm from premature convergence, a stagnation detection strategy is introduced to apply a Gaussian perturbation operation to the particles that fall into the neighborhood optimum. Finally, the proposed algorithm is used to solve multimodal multi-objective test problems and compared with existing multimodal multi-objective optimization algorithms. The results show that the proposed algorithm can obtain more Pareto solutions when solving different types of multimodal multi-objective functions.
引用
收藏
页码:1073 / 1078
页数:6
相关论文
共 50 条
  • [1] A multi-objective particle swarm optimizer based on reference point for multimodal multi-objective optimization
    Li, Guosen
    Zhou, Ting
    [J]. ENGINEERING APPLICATIONS OF ARTIFICIAL INTELLIGENCE, 2022, 107
  • [2] A Particle Swarm Optimizer for Multi-Objective Optimization
    Cagnina, Leticia
    Esquivel, Susana
    Coello Coello, Carlos A.
    [J]. JOURNAL OF COMPUTER SCIENCE & TECHNOLOGY, 2005, 5 (04): : 204 - 210
  • [3] A multi-objective interactive dynamic particle swarm optimizer
    Barba-Gonzalez, Cristobal
    Nebro, Antonio J.
    Garcia-Nieto, Jose
    Aldana-Montes, Jose F.
    [J]. PROGRESS IN ARTIFICIAL INTELLIGENCE, 2020, 9 (01) : 55 - 65
  • [4] A multi-objective interactive dynamic particle swarm optimizer
    Cristóbal Barba-González
    Antonio J. Nebro
    José García-Nieto
    José F. Aldana-Montes
    [J]. Progress in Artificial Intelligence, 2020, 9 : 55 - 65
  • [5] An Effective Adaptive Multi-objective Particle Swarm for Multimodal Constrained Function Optimization
    Zhou, Yongquan
    Pei, Shengyu
    [J]. JOURNAL OF COMPUTERS, 2010, 5 (08) : 1144 - 1151
  • [6] A modified particle swarm optimization for multimodal multi-objective optimization
    Zhang, XuWei
    Liu, Hao
    Tu, LiangPing
    [J]. ENGINEERING APPLICATIONS OF ARTIFICIAL INTELLIGENCE, 2020, 95
  • [7] Multi-objective optimization based on an adaptive competitive swarm optimizer
    Huang, Weimin
    Zhang, Wei
    [J]. INFORMATION SCIENCES, 2022, 583 : 266 - 287
  • [8] Topological clustering particle swarm optimizer based on adaptive resonance theory for multimodal multi-objective problems
    Yao, Qi
    Yang, Shunkun
    Shao, Qi
    Bian, Chong
    Wu, Mengdan
    [J]. INFORMATION SCIENCES, 2024, 679
  • [9] A grid-guided particle swarm optimizer for multimodal multi-objective problems
    Qu, Boyang
    Li, Guosen
    Yan, Li
    Liang, Jing
    Yue, Caitong
    Yu, Kunjie
    Crisalle, Oscar D.
    [J]. APPLIED SOFT COMPUTING, 2022, 117
  • [10] An improved multi-objective particle swarm optimizer for multi-objective problems
    Tsai, Shang-Jeng
    Sun, Tsung-Ying
    Liu, Chan-Cheng
    Hsieh, Sheng-Ta
    Wu, Wun-Ci
    Chiu, Shih-Yuan
    [J]. EXPERT SYSTEMS WITH APPLICATIONS, 2010, 37 (08) : 5872 - 5886