A Multi-objective Particle Swarm Optimizer Based on Decomposition

被引:0
|
作者
Zapotecas Martinez, Saul [1 ]
Coello Coello, Carlos A. [1 ]
机构
[1] CINVESTAV IPN EVOCINV, Dept Computac, Mexico City 07360, DF, Mexico
关键词
Multi-objective optimization; particle swarm optimization; decomposition approach; ALGORITHM;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
The simplicity and success of particle swarm optimization (PSO) algorithms, has motivated researchers to extend the use of these techniques to the multi-objective optimization field. This paper presents a multi-objective particle swarm optimization (MOPSO) algorithm based on a decomposition approach, which is intended for solving continuous and unconstrained multi-objective optimization problems (MOPs). The proposed decomposition-based multi-objective particle swarm optimizer (dMOPSO), updates the position of each particle using a set of solutions considered as the global best according to the decomposition approach. dMOPSO is mainly characterized by the use of a memory reinitialization process which aims to provide diversity to the swarm. Our proposed approach is compared with respect to two decomposition-based multi-objective evolutionary algorithms (MOEAs) which are representative of the state-of-the-art in the area. Our results indicate that our proposed approach is competitive and it outperforms the two MOEAs with respect to which it was compared in most of the test problems adopted.
引用
收藏
页码:69 / 76
页数:8
相关论文
共 50 条
  • [1] A Multi-objective Particle Swarm Optimizer Based on Simulated Annealing and Decomposition
    Zhang, Huan
    Wu, Jun
    Sun, Changyue
    Zhong, Ming
    Yang, Rennong
    [J]. PROCEEDINGS OF 2018 5TH IEEE INTERNATIONAL CONFERENCE ON CLOUD COMPUTING AND INTELLIGENCE SYSTEMS (CCIS), 2018, : 262 - 273
  • [2] A Niche Based Multi-objective Particle Swarm Optimizer
    Guo, Jinglei
    Shao, Miaomiao
    Jiang, Shouyong
    Zhou, Xinyu
    [J]. 2021 IEEE CONGRESS ON EVOLUTIONARY COMPUTATION (CEC 2021), 2021, : 1319 - 1326
  • [3] A Particle Swarm Optimizer for Multi-Objective Optimization
    Cagnina, Leticia
    Esquivel, Susana
    Coello Coello, Carlos A.
    [J]. JOURNAL OF COMPUTER SCIENCE & TECHNOLOGY, 2005, 5 (04): : 204 - 210
  • [4] An improved multi-objective particle swarm optimizer for multi-objective problems
    Tsai, Shang-Jeng
    Sun, Tsung-Ying
    Liu, Chan-Cheng
    Hsieh, Sheng-Ta
    Wu, Wun-Ci
    Chiu, Shih-Yuan
    [J]. EXPERT SYSTEMS WITH APPLICATIONS, 2010, 37 (08) : 5872 - 5886
  • [5] A multi-objective particle swarm optimizer based on reference point for multimodal multi-objective optimization
    Li, Guosen
    Zhou, Ting
    [J]. ENGINEERING APPLICATIONS OF ARTIFICIAL INTELLIGENCE, 2022, 107
  • [6] A scalable coevolutionary multi-objective particle swarm optimizer
    Zheng, Xiangwei
    Liu, Hong
    [J]. INTERNATIONAL JOURNAL OF COMPUTATIONAL INTELLIGENCE SYSTEMS, 2010, 3 (05) : 590 - 600
  • [7] A multi-objective interactive dynamic particle swarm optimizer
    Barba-Gonzalez, Cristobal
    Nebro, Antonio J.
    Garcia-Nieto, Jose
    Aldana-Montes, Jose F.
    [J]. PROGRESS IN ARTIFICIAL INTELLIGENCE, 2020, 9 (01) : 55 - 65
  • [8] A scalable coevolutionary multi-objective particle swarm optimizer
    Zheng X.
    Liu H.
    [J]. International Journal of Computational Intelligence Systems, 2010, 3 (5) : 590 - 600
  • [9] A Proposal of a Multi-Objective Compact Particle Swarm Optimizer
    Jimenez Montiel, Jorge
    Coello Coello, Carlos A.
    Castillo Tapia, Ma. Guadalupe
    [J]. 2019 IEEE SYMPOSIUM SERIES ON COMPUTATIONAL INTELLIGENCE (IEEE SSCI 2019), 2019, : 2269 - 2278
  • [10] A multi-objective interactive dynamic particle swarm optimizer
    Cristóbal Barba-González
    Antonio J. Nebro
    José García-Nieto
    José F. Aldana-Montes
    [J]. Progress in Artificial Intelligence, 2020, 9 : 55 - 65