Continuous Symmetry Breaking in 1D Long-Range Interacting Quantum Systems

被引:86
|
作者
Maghrebi, Mohammad F. [1 ,2 ,3 ]
Gong, Zhe-Xuan [1 ,2 ,4 ]
Gorshkov, Alexey V. [1 ,2 ]
机构
[1] Univ Maryland, NIST, Joint Quantum Inst, College Pk, MD 20742 USA
[2] Univ Maryland, NIST, Joint Ctr Quantum Informat & Comp Sci, College Pk, MD 20742 USA
[3] Michigan State Univ, Dept Phys & Astron, E Lansing, MI 48824 USA
[4] Colorado Sch Mines, Dept Phys, Golden, CO 80401 USA
基金
美国国家科学基金会;
关键词
DIAMOND; SPINS; ENTANGLEMENT; PROPAGATION; SIMULATOR; CHAINS; GASES;
D O I
10.1103/PhysRevLett.119.023001
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Continuous symmetry breaking (CSB) in low-dimensional systems, forbidden by the Mermin-Wagner theorem for short-range interactions, may take place in the presence of slowly decaying long-range interactions. Nevertheless, there is no stringent bound on how slowly interactions should decay to give rise to CSB in 1D quantum systems at zero temperature. Here, we study a long-range interacting spin chain with U(1) symmetry and power-law interactions V(r) similar to 1/r(a). Using a number of analytical and numerical techniques, we find CSB for a smaller than a critical exponent alpha(c)(<= 3) that depends on the microscopic parameters of the model. Furthermore, the transition from the gapless XY phase to the gapless CSB phase is mediated by the breaking of conformal and Lorentz symmetries due to long-range interactions, and is described by a universality class akin to, but distinct from, the Berezinskii-Kosterlitz-Thouless transition. Signatures of the CSB phase should be accessible in existing trapped-ion experiments.
引用
收藏
页数:6
相关论文
共 50 条
  • [21] Symmetry, integrability and deformations of long-range interacting Hamiltonians
    Ballesteros, A
    INTERNATIONAL JOURNAL OF MODERN PHYSICS B, 1999, 13 (24-25): : 2903 - 2908
  • [22] Effects of energy extensivity on the quantum phases of long-range interacting systems
    Botzung, T.
    Hagenmueller, D.
    Masella, G.
    Dubail, J.
    Defenu, N.
    Trombettoni, A.
    Pupillo, G.
    PHYSICAL REVIEW B, 2021, 103 (15)
  • [23] Commensurate and incommensurate 1D interacting quantum systems
    Andrea Di Carli
    Christopher Parsonage
    Arthur La Rooij
    Lennart Koehn
    Clemens Ulm
    Callum W. Duncan
    Andrew J. Daley
    Elmar Haller
    Stefan Kuhr
    Nature Communications, 15
  • [24] Commensurate and incommensurate 1D interacting quantum systems
    Di Carli, Andrea
    Parsonage, Christopher
    La Rooij, Arthur
    Koehn, Lennart
    Ulm, Clemens
    Duncan, Callum W.
    Daley, Andrew J.
    Haller, Elmar
    Kuhr, Stefan
    NATURE COMMUNICATIONS, 2024, 15 (01)
  • [25] Spectral analysis and synthesis of 1D dichotomous long-range correlated systems: From diffraction gratings to quantum wires
    Usatenko, O. V.
    Melnik, S. S.
    Kroon, L.
    Johansson, M.
    Riklund, R.
    Apostolov, S. S.
    PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2008, 387 (19-20) : 4733 - 4739
  • [26] Phase transition in d-dimensional long-range interacting systems
    Tatekawa, Takayuki
    COMPUTER PHYSICS COMMUNICATIONS, 2007, 177 (1-2) : 190 - 190
  • [27] Long-range interactions in 1D heterogeneous solids with uncertainty
    Muscolino, G.
    Sofi, A.
    Zingales, M.
    IUTAM SYMPOSIUM ON MULTISCALE PROBLEMS IN STOCHASTIC MECHANICS, 2013, 6 : 69 - 78
  • [28] Mixing and decoherence in continuous-time quantum walks on long-range interacting cycles
    Salimi, S.
    Radgohar, R.
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2009, 42 (47)
  • [29] Incomplete equilibrium in long-range interacting systems
    Baldovin, Fulvio
    Orlandini, Enzo
    PHYSICAL REVIEW LETTERS, 2006, 97 (10)
  • [30] Eigenstate Thermalization in Long-Range Interacting Systems
    Sugimoto S.
    Hamazaki R.
    Ueda M.
    Physical Review Letters, 2022, 129 (03)