Co-GCN for Multi-View Semi-Supervised Learning

被引:0
|
作者
Li, Shu [1 ]
Li, Wen-Tao [1 ]
Wang, Wei [1 ]
机构
[1] Nanjing Univ, Natl Key Lab Novel Software Technol, Nanjing 210023, Peoples R China
基金
国家重点研发计划; 美国国家科学基金会;
关键词
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In many real-world applications, the data have several disjoint sets of features and each set is called as a view. Researchers have developed many multi-view learning methods in the past decade. In this paper, we bring Graph Convolutional Network (GCN) into multi-view learning and propose a novel multi-view semi-supervised learning method Co-GCN by adaptively exploiting the graph information from the multiple views with combined Laplacians. Experimental results on real-world data sets verify that Co-GCN can achieve better performance compared with state-of-the-art multi-view semi-supervised methods.
引用
收藏
页码:4691 / 4698
页数:8
相关论文
共 50 条
  • [41] Semi-Supervised Learning and Feature Fusion for Multi-view Data Clustering
    Salman, Hadi
    Zhan, Justin
    [J]. 2020 IEEE INTERNATIONAL CONFERENCE ON BIG DATA (BIG DATA), 2020, : 645 - 650
  • [42] Human Action Recognition Based on Multi-view Semi-supervised Learning
    Tang, Chao
    Wang, Wenjian
    Wang, Xiaofeng
    Zhang, Chen
    Zou, Le
    [J]. Moshi Shibie yu Rengong Zhineng/Pattern Recognition and Artificial Intelligence, 2019, 32 (04): : 376 - 384
  • [43] Multi-view classification with semi-supervised learning for SAR target recognition
    Zhang, Yukun
    Guo, Xiansheng
    Ren, Haohao
    Li, Lin
    [J]. SIGNAL PROCESSING, 2021, 183
  • [44] Semi-supervised Unified Latent Factor learning with multi-view data
    Yu Jiang
    Jing Liu
    Zechao Li
    Hanqing Lu
    [J]. Machine Vision and Applications, 2014, 25 : 1635 - 1645
  • [45] Reducing the Unlabeled Sample Complexity of Semi-Supervised Multi-view Learning
    Lan, Chao
    Huan, Jun
    [J]. KDD'15: PROCEEDINGS OF THE 21ST ACM SIGKDD INTERNATIONAL CONFERENCE ON KNOWLEDGE DISCOVERY AND DATA MINING, 2015, : 627 - 634
  • [46] Latent multi-view semi-supervised classification by using graph learning
    Huang, Yanquan
    Yuan, Haoliang
    Lai, Loi Lei
    [J]. INTERNATIONAL JOURNAL OF WAVELETS MULTIRESOLUTION AND INFORMATION PROCESSING, 2020, 18 (05)
  • [47] Multi-View Semi-Supervised Learning for Dialog Act Segmentation of Speech
    Guz, Umit
    Cuendet, Sebastien
    Hakkani-Tuer, Dilek
    Tur, Gokhan
    [J]. IEEE TRANSACTIONS ON AUDIO SPEECH AND LANGUAGE PROCESSING, 2010, 18 (02): : 320 - 329
  • [48] Interpretable Graph Convolutional Network for Multi-View Semi-Supervised Learning
    Wu, Zhihao
    Lin, Xincan
    Lin, Zhenghong
    Chen, Zhaoliang
    Bai, Yang
    Wang, Shiping
    [J]. IEEE TRANSACTIONS ON MULTIMEDIA, 2023, 25 : 8593 - 8606
  • [49] EMPC: Efficient multi-view parallel co-learning for semi-supervised action recognition
    Tong, Anyang
    Tang, Chao
    Wang, Wenjian
    [J]. EXPERT SYSTEMS WITH APPLICATIONS, 2024, 255
  • [50] Efficient multi-view semi-supervised feature selection
    Zhang, Chenglong
    Jiang, Bingbing
    Wang, Zidong
    Yang, Jie
    Lu, Yangfeng
    Wu, Xingyu
    Sheng, Weiguo
    [J]. INFORMATION SCIENCES, 2023, 649