Latent multi-view semi-supervised classification by using graph learning

被引:1
|
作者
Huang, Yanquan [1 ]
Yuan, Haoliang [1 ]
Lai, Loi Lei [1 ]
机构
[1] Guangdong Univ Technol, Sch Automat, Guangzhou 510006, Peoples R China
关键词
Multi-view semi-supervised classification; latent intact representation; graph learning; FUSION;
D O I
10.1142/S0219691320500393
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
Multi-view learning is a hot research direction in the field of machine learning and pattern recognition, which is attracting more and more attention recently. In the real world, the available data commonly include a small number of labeled samples and a large number of unlabeled samples. In this paper, we propose a latent multi-view semi-supervised classification method by using graph learning. This work recovers a latent intact representation to utilize the complementary information of the multi-view data. In addition, an adaptive graph learning technique is adopted to explore the local structure of this latent intact representation. To fully use this latent intact representation to discover the label information of the unlabeled data, we consider to unify the procedures of computing the latent intact representation and the labels of unlabeled data as a whole. An alternating optimization algorithm is designed to effectively solve the optimization of the proposed method. Extensive experimental results demonstrate the effectiveness of our proposed method.
引用
收藏
页数:16
相关论文
共 50 条
  • [1] Latent Multi-view Semi-Supervised Classification
    Bo, Xiaofan
    Kang, Zhao
    Zhao, Zhitong
    Su, Yuanzhang
    Chen, Wenyu
    [J]. ASIAN CONFERENCE ON MACHINE LEARNING, VOL 101, 2019, 101 : 348 - 362
  • [2] Diversity-promoting multi-view graph learning for semi-supervised classification
    Zhan, Shanhua
    Sun, Weijun
    Du, Cuifeng
    Zhong, Weifang
    [J]. INTERNATIONAL JOURNAL OF MACHINE LEARNING AND CYBERNETICS, 2021, 12 (10) : 2843 - 2857
  • [3] Diversity-promoting multi-view graph learning for semi-supervised classification
    Shanhua Zhan
    Weijun Sun
    Cuifeng Du
    Weifang Zhong
    [J]. International Journal of Machine Learning and Cybernetics, 2021, 12 : 2843 - 2857
  • [4] Multi-view Learning for Semi-supervised Sentiment Classification
    Su, Yan
    Li, Shoushan
    Ju, Shengfeng
    Zhou, Guodong
    Li, Xiaojun
    [J]. 2012 INTERNATIONAL CONFERENCE ON ASIAN LANGUAGE PROCESSING (IALP 2012), 2012, : 13 - 16
  • [5] Multi-view semi-supervised learning for image classification
    Zhu, Songhao
    Sun, Xian
    Jin, Dongliang
    [J]. NEUROCOMPUTING, 2016, 208 : 136 - 142
  • [6] SMGCL: Semi-supervised Multi-view Graph Contrastive Learning
    Zhou, Hui
    Gong, Maoguo
    Wang, Shanfeng
    Gao, Yuan
    Zhao, Zhongying
    [J]. KNOWLEDGE-BASED SYSTEMS, 2023, 260
  • [7] Multi-view semi-supervised learning with adaptive graph fusion
    Qiang, Qianyao
    Zhang, Bin
    Nie, Feiping
    Wang, Fei
    [J]. NEUROCOMPUTING, 2023, 557
  • [8] Fast Multi-View Semi-Supervised Learning With Learned Graph
    Zhang, Bin
    Qiang, Qianyao
    Wang, Fei
    Nie, Feiping
    [J]. IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, 2022, 34 (01) : 286 - 299
  • [9] Flexible multi-view semi-supervised learning with unified graph
    Li, Zhongheng
    Qiang, Qianyao
    Zhang, Bin
    Wang, Fei
    Nie, Feiping
    [J]. NEURAL NETWORKS, 2021, 142 (142) : 92 - 104
  • [10] Inductive Multi-View Semi-supervised Learning with a Consensus Graph
    N. Ziraki
    A. Bosaghzadeh
    F. Dornaika
    Z. Ibrahim
    N. Barrena
    [J]. Cognitive Computation, 2023, 15 : 904 - 913