On the robust stability of 2D Schur polynomials

被引:1
|
作者
Mastorakis, NE [1 ]
机构
[1] Hellen Naval Acad, Dept Comp Sci, Mil Inst Univ Educ, Dept Comp Sci, Piraeus, Greece
关键词
multidimensional polynomial theory; robustness; Kharitonov theorem; stability; Schur polynomials; inverse Kharitonov problem; Rouche theorem;
D O I
10.1023/A:1004615917160
中图分类号
C93 [管理学]; O22 [运筹学];
学科分类号
070105 ; 12 ; 1201 ; 1202 ; 120202 ;
摘要
In this note, the problem of the robust stability for a two-dimensional (two-variable) Schur polynomial which is the characteristic polynomial of a discrete-time linear time-invariant system is investigated. A new approach based on the Rouche theorem is adopted. The extension to the robust stability for multidimensional (multivariable) polynomials is also provided. Interesting sufficient conditions for such robust stability are derived. A two-dimensional example is included to support the theoretical result.
引用
收藏
页码:431 / 439
页数:9
相关论文
共 50 条
  • [31] Schur stability of convex combinations of complex polynomials
    Choo, Younseok
    Choi, Gin Kyu
    [J]. IEICE TRANSACTIONS ON FUNDAMENTALS OF ELECTRONICS COMMUNICATIONS AND COMPUTER SCIENCES, 2007, E90A (11) : 2612 - 2615
  • [32] Schur stability regions for complex quadratic polynomials
    Cheng, Sui Sun
    Huang, Shao Yuan
    [J]. INTERNATIONAL JOURNAL OF MATHEMATICAL EDUCATION IN SCIENCE AND TECHNOLOGY, 2010, 41 (07) : 950 - 964
  • [33] Schur stability of the convex combination of complex polynomials
    Bialas, Stanislaw
    Bialas, Malgorzata
    [J]. CONTROL AND CYBERNETICS, 2010, 39 (02): : 551 - 558
  • [34] On the Monotonic Condition for Schur Stability of Real Polynomials
    Choo, Younseok
    Choi, Gin-Kyu
    [J]. IEICE TRANSACTIONS ON FUNDAMENTALS OF ELECTRONICS COMMUNICATIONS AND COMPUTER SCIENCES, 2011, E94A (12) : 2886 - 2888
  • [35] Some remarks on the Schur stability of interval polynomials
    Jetto, Leopoldo
    Orsini, Valentina
    [J]. 2008 MEDITERRANEAN CONFERENCE ON CONTROL AUTOMATION, VOLS 1-4, 2008, : 131 - 134
  • [36] ON ROBUST SCHUR PROPERTY OF DISCRETE-TIME POLYNOMIALS
    KATBAB, A
    JURY, EI
    MANSOUR, M
    [J]. IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS I-FUNDAMENTAL THEORY AND APPLICATIONS, 1992, 39 (06): : 467 - 470
  • [37] Stability Testing of 2D Filters based on Tschebyscheff polynomials and Generalized Eigenvalues
    Kraus, Frantisek J.
    Agathoklis, Panajotis
    [J]. 2020 IEEE INTERNATIONAL SYMPOSIUM ON CIRCUITS AND SYSTEMS (ISCAS), 2020,
  • [38] Robust Schur stability with polynomial parameters
    Dumitrescu, Bogdan
    Chang, Bor-Chin
    [J]. IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS II-EXPRESS BRIEFS, 2006, 53 (07) : 535 - 537
  • [39] Rotation of 2D orthogonal polynomials
    Yang, Bo
    Flusser, Jan
    Kautsky, Jaroslav
    [J]. PATTERN RECOGNITION LETTERS, 2018, 102 : 44 - 49
  • [40] Hermite and Laguerre 2D polynomials
    Wünsche, A
    [J]. JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2001, 133 (1-2) : 665 - 678