Robust Schur stability with polynomial parameters

被引:5
|
作者
Dumitrescu, Bogdan [1 ]
Chang, Bor-Chin
机构
[1] Tampere Univ Technol, Tampere Int Ctr Signal Proc, FIN-33101 Tampere, Finland
[2] Drexel Univ, Dept Mech Engn & Mech, Philadelphia, PA 19104 USA
关键词
positivstellensatz; robust Schur polynomial; semidefinite programming; stability; sum-of-squares polynomials;
D O I
10.1109/TCSII.2006.875329
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
We propose a stability test for discrete-time systems whose coefficients depend polynomially on some bounded parameters. The test is a particular form of Positivstellensatz, appeals to sum-of-squares polynomials and can be implemented as a semidefinite programming problem. Although implementable only in relaxed form, due to the necessity of limiting the degrees of the polynomial variables involved, the experiments show a good accuracy with degrees smaller than for other tests.
引用
收藏
页码:535 / 537
页数:3
相关论文
共 50 条
  • [1] ROBUST SCHUR POLYNOMIAL STABILITY AND KHARITONOV THEOREM
    KRAUS, F
    ANDERSON, BDO
    MANSOUR, M
    [J]. INTERNATIONAL JOURNAL OF CONTROL, 1988, 47 (05) : 1213 - 1225
  • [2] Robust Schur Stability of a Polynomial Matrix Family
    Kalinina, Elizaveta
    Smol'kin, Yuri
    Uteshev, Alexei
    [J]. COMPUTER ALGEBRA IN SCIENTIFIC COMPUTING (CASC 2019), 2019, 11661 : 262 - 279
  • [3] Robust schur stability of polynomials with polynomial parameter dependency
    Garloff, J
    Graf, B
    [J]. MULTIDIMENSIONAL SYSTEMS AND SIGNAL PROCESSING, 1999, 10 (02) : 189 - 199
  • [4] Robust Schur stability of polynomials with polynomial parameter dependency
    Fachhochschule Konstanz, Fachbereich Informatik, Postfach 10 05 43, D-78405 Konstanz, Germany
    [J]. Multidimens Syst Signal Proc, 2 (189-199):
  • [5] Robust Schur Stability of Polynomials with Polynomial Parameter Dependency
    Jürgen Garloff
    Birgit Graf
    [J]. Multidimensional Systems and Signal Processing, 1999, 10 : 189 - 199
  • [6] A robust Schur stability condition for interval polynomial matrix systems
    Ahn, Hyo-Sung
    Chen, YangQuan
    Moore, Kevin L.
    [J]. IEEE ICMA 2006: PROCEEDING OF THE 2006 IEEE INTERNATIONAL CONFERENCE ON MECHATRONICS AND AUTOMATION, VOLS 1-3, PROCEEDINGS, 2006, : 672 - +
  • [7] ON THE STABILITY HYPERELLIPSOID OF A SCHUR POLYNOMIAL
    WU, QH
    MANSOUR, M
    [J]. LINEAR ALGEBRA AND ITS APPLICATIONS, 1994, 206 : 1271 - 1288
  • [8] ON THE STABILITY RADIUS OF A SCHUR POLYNOMIAL
    WU, QH
    MANSOUR, M
    [J]. SYSTEMS & CONTROL LETTERS, 1993, 21 (03) : 199 - 205
  • [9] Robust Schur-stability of a disk polynomial with parameter-varying coefficients
    He, Zhongwei
    [J]. PROCEEDINGS OF THE 38TH CHINESE CONTROL CONFERENCE (CCC), 2019, : 168 - 172
  • [10] ROBUST SCHUR STABILITY OF A POLYTOPE OF POLYNOMIALS
    ACKERMANN, JE
    BARMISH, BR
    [J]. IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 1988, 33 (10) : 984 - 986