Assessing computational tools for the discovery of transcription factor binding sites

被引:844
|
作者
Tompa, M
Li, N
Bailey, TL
Church, GM
De Moor, B
Eskin, E
Favorov, AV
Frith, MC
Fu, YT
Kent, WJ
Makeev, VJ
Mironov, AA
Noble, WS
Pavesi, G
Pesole, G
Régnier, M
Simonis, N
Sinha, S
Thijs, G
van Helden, J
Vandenbogaert, M
Weng, ZP
Workman, C
Ye, C
Zhu, Z
机构
[1] Univ Washington, Dept Comp Sci & Engn, Seattle, WA 98195 USA
[2] Univ Washington, Dept Genome Sci, Seattle, WA 98195 USA
[3] Univ Queensland, Inst Mol Biosci, Brisbane, Qld, Australia
[4] Harvard Univ, Sch Med, Dept Genet, Boston, MA 02115 USA
[5] Harvard Univ, Sch Med, Lipper Ctr Computat Genet, Boston, MA 02115 USA
[6] Katholieke Univ Leuven, ESAT SCD, B-3001 Louvain, Belgium
[7] Univ Calif San Diego, Dept Comp Sci & Engn, La Jolla, CA 92093 USA
[8] State Sci Ctr GosNIIGenet, Moscow 117545, Russia
[9] Russian Acad Sci, VA Engelhardt Mol Biol Inst, Moscow 119991, Russia
[10] Boston Univ, Bioinformat Program, Boston, MA 02215 USA
[11] Univ Calif Santa Cruz, Ctr Biomol Sci & Engn, Santa Cruz, CA 95064 USA
[12] Moscow MV Lomonosov State Univ, Dept Bioengn & Bioinformat, Moscow 119992, Russia
[13] Univ Milan, Dept Comp Sci & Commun DICo, Milan, Italy
[14] Univ Milan, Dept Biomol Sci & Biotechnol, Milan, Italy
[15] INRIA Rocquencourt, F-78153 Le Chesnay, France
[16] Free Univ Brussels, SCMB, B-1050 Brussels, Belgium
[17] Rockefeller Univ, Ctr Studies Phys & Biol, New York, NY 10021 USA
[18] Univ Calif San Diego, Dept Bioengn, La Jolla, CA 92093 USA
[19] Univ Calif San Diego, Bioinformat Program, La Jolla, CA 92093 USA
关键词
D O I
10.1038/nbt1053
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
The prediction of regulatory elements is a problem where computational methods offer great hope. Over the past few years, numerous tools have become available for this task. The purpose of the current assessment is twofold: to provide some guidance to users regarding the accuracy of currently available tools in various settings, and to provide a benchmark of data sets for assessing future tools.
引用
收藏
页码:137 / 144
页数:8
相关论文
共 50 条
  • [21] Computational Detection of Transcription Factor Binding Sites Through Differential Renyi Entropy
    Maynou, Joan
    Gallardo-Chacon, Joan-Josep
    Vallverdu, Montserrat
    Caminal, Pere
    Perera, Alexandre
    IEEE TRANSACTIONS ON INFORMATION THEORY, 2010, 56 (02) : 734 - 741
  • [22] Computational framework for the prediction of transcription factor binding sites by multiple data integration
    Alberto Ambesi-Impiombato
    Mukesh Bansal
    Pietro Liò
    Diego di Bernardo
    BMC Neuroscience, 7
  • [23] Pseudocounts for transcription factor binding sites
    Nishida, Keishin
    Frith, Martin C.
    Nakai, Kenta
    NUCLEIC ACIDS RESEARCH, 2009, 37 (03) : 939 - 944
  • [24] Computational tools for inferring transcription factor activity
    Hecker, Dennis
    Lauber, Michael
    Ardakani, Fatemeh Behjati
    Ashrafiyan, Shamim
    Manz, Quirin
    Kersting, Johannes
    Hoffmann, Markus
    Schulz, Marcel H.
    List, Markus
    PROTEOMICS, 2023, 23 (23-24)
  • [25] Analysis of transcription control regions by detecting individual transcription factor binding sites and assessing their spatial organization
    Quandt, K
    Frech, K
    Werner, T
    MOLECULAR BIOLOGY, 1997, 31 (04) : 638 - 646
  • [26] rVista for comparative sequence-based discovery of functional transcription factor binding sites
    Loots, GG
    Ovcharenko, I
    Pachter, L
    Dubchak, I
    Rubin, EM
    GENOME RESEARCH, 2002, 12 (05) : 832 - 839
  • [27] Discovery and information-theoretic characterization of transcription factor binding sites that act cooperatively
    Clifford, Jacob
    Adami, Christoph
    PHYSICAL BIOLOGY, 2015, 12 (05)
  • [28] Discovery, validation, and genetic dissection of transcription factor binding sites by comparative and functional genomics
    Gertz, J
    Riles, L
    Turnbaugh, P
    Ho, SW
    Cohen, BA
    GENOME RESEARCH, 2005, 15 (08) : 1145 - 1152
  • [29] Using Varying Negative Examples to Improve Computational Predictions of Transcription Factor Binding Sites
    Rezwan, Faisal
    Sun, Yi
    Davey, Neil
    Adams, Rod
    Rust, Alistair G.
    Robinson, Mark
    ENGINEERING APPLICATIONS OF NEURAL NETWORKS, 2012, 311 : 234 - +
  • [30] Computational predictions of common transcription factor binding sites on the genes of proline metabolism in plants
    Kiran, Usha
    Abdin, Malik Zainul
    BIOINFORMATION, 2012, 8 (18) : 886 - 890