Computational tools for inferring transcription factor activity

被引:7
|
作者
Hecker, Dennis [1 ,2 ,3 ]
Lauber, Michael [4 ]
Ardakani, Fatemeh Behjati [1 ,2 ,3 ]
Ashrafiyan, Shamim [1 ,2 ,3 ]
Manz, Quirin [4 ]
Kersting, Johannes [4 ,5 ]
Hoffmann, Markus [4 ,6 ,7 ]
Schulz, Marcel H. [1 ,2 ,3 ]
List, Markus [4 ,8 ]
机构
[1] Goethe Univ Frankfurt, Frankfurt, Germany
[2] German Ctr Cardiovasc Res, Partner Site Rhein Main, Frankfurt, Germany
[3] Goethe Univ Hosp, Cardiopulm Inst, D-60590 Frankfurt, Germany
[4] Tech Univ Munich, Chair Expt Bioinformat, TUM Sch Life Sci, Big Data Biomed Grp, Freising Weihenstephan, Germany
[5] GeneSurge GmbH, Munich, Germany
[6] Tech Univ Munich, Inst Adv Study, Garching, Germany
[7] Natl Inst Diabet & Digest & Kidney Dis, NIH, Bethesda, MD USA
[8] Tech Univ Munich, Chair Expt Bioinformat, TUM Sch Life Sci, Big Data Biomed Grp, D-85354 Freising Weihenstephan, Germany
关键词
bioinformatic tools; gene regulation; gene regulatory networks; transcription factor activity; NETWORK COMPONENT ANALYSIS; CHROMATIN ACCESSIBILITY; SYSTEMATIC-APPROACH; GENE-EXPRESSION; DNA-BINDING; CHIP-SEQ; INFERENCE; RECONSTRUCTION; REGULATORS; DISCOVERY;
D O I
10.1002/pmic.202200462
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Transcription factors (TFs) are essential players in orchestrating the regulatory landscape in cells. Still, their exact modes of action and dependencies on other regulatory aspects remain elusive. Since TFs act cell type-specific and each TF has its own characteristics, untangling their regulatory interactions from an experimental point of view is laborious and convoluted. Thus, there is an ongoing development of computational tools that estimate transcription factor activity (TFA) from a variety of data modalities, either based on a mapping of TFs to their putative target genes or in a genome-wide, gene-unspecific fashion. These tools can help to gain insights into TF regulation and to prioritize candidates for experimental validation. We want to give an overview of available computational tools that estimate TFA, illustrate examples of their application, debate common result validation strategies, and discuss assumptions and concomitant limitations.
引用
收藏
页数:20
相关论文
共 50 条
  • [1] A Gaussian Process Model for Inferring the Dynamic Transcription Factor Activity
    Rahman, Muhammad Arifur
    Lawrence, Neil D.
    PROCEEDINGS OF THE 7TH ACM INTERNATIONAL CONFERENCE ON BIOINFORMATICS, COMPUTATIONAL BIOLOGY, AND HEALTH INFORMATICS, 2016, : 495 - 496
  • [2] Assessing computational tools for the discovery of transcription factor binding sites
    Martin Tompa
    Nan Li
    Timothy L Bailey
    George M Church
    Bart De Moor
    Eleazar Eskin
    Alexander V Favorov
    Martin C Frith
    Yutao Fu
    W James Kent
    Vsevolod J Makeev
    Andrei A Mironov
    William Stafford Noble
    Giulio Pavesi
    Graziano Pesole
    Mireille Régnier
    Nicolas Simonis
    Saurabh Sinha
    Gert Thijs
    Jacques van Helden
    Mathias Vandenbogaert
    Zhiping Weng
    Christopher Workman
    Chun Ye
    Zhou Zhu
    Nature Biotechnology, 2005, 23 : 137 - 144
  • [3] Assessing computational tools for the discovery of transcription factor binding sites
    Tompa, M
    Li, N
    Bailey, TL
    Church, GM
    De Moor, B
    Eskin, E
    Favorov, AV
    Frith, MC
    Fu, YT
    Kent, WJ
    Makeev, VJ
    Mironov, AA
    Noble, WS
    Pavesi, G
    Pesole, G
    Régnier, M
    Simonis, N
    Sinha, S
    Thijs, G
    van Helden, J
    Vandenbogaert, M
    Weng, ZP
    Workman, C
    Ye, C
    Zhu, Z
    NATURE BIOTECHNOLOGY, 2005, 23 (01) : 137 - 144
  • [4] Computational Approaches to Modeling Transcription Factor Activity and Gene Regulation
    Meyer, Clifford A.
    Liu, X. Shirley
    TRENDS IN BIOCHEMICAL SCIENCES, 2020, 45 (12) : 1094 - 1095
  • [5] Inferring transcription factor activity from microarray data reveals novel targets for toxicological investigations
    Souza, T. M.
    van den Beucken, T.
    Kleinjans, J. C. S.
    Jennen, D. G. J.
    TOXICOLOGY, 2017, 389 : 101 - 107
  • [6] Inferring transcription factor collaborations in gene regulatory networks
    Awad, Sherine
    Chen, Jin
    BMC SYSTEMS BIOLOGY, 2014, 8
  • [7] Deep learning for inferring transcription factor binding sites
    Koo, Peter K.
    Ploenzke, Matt
    CURRENT OPINION IN SYSTEMS BIOLOGY, 2020, 19 : 16 - 23
  • [8] Inferring functional transcription factor-gene binding pairs by integrating transcription factor binding data with transcription factor knockout data
    Yang, Tzu-Hsien
    Wu, Wei-Sheng
    BMC SYSTEMS BIOLOGY, 2013, 7
  • [9] Benchmarking tools for transcription factor prioritization
    Santana, Leonor Schubert
    Reyes, Alejandro
    Hoersch, Sebastian
    Ferrero, Enrico
    Kolter, Christian
    Gaulis, Swann
    Steinhauser, Sebastian
    COMPUTATIONAL AND STRUCTURAL BIOTECHNOLOGY JOURNAL, 2024, 23 : 2190 - 2199
  • [10] Inferring microRNA and transcription factor regulatory networks in heterogeneous data
    Thuc D Le
    Lin Liu
    Bing Liu
    Anna Tsykin
    Gregory J Goodall
    Kenji Satou
    Jiuyong Li
    BMC Bioinformatics, 14