Exponential evolutionary programming without self-adaptive strategy parameter

被引:0
|
作者
Narihisa, H. [1 ]
Taniguchi, T. [1 ]
Ohta, M. [1 ]
Katayama, K. [1 ]
机构
[1] Okayama Univ Sci, Dept Informat & Comp Engn, Fac Engn, 1-1 Ridai Cho, Okayama 7000005, Japan
关键词
D O I
10.1109/CEC.2006.1688357
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Evolutionary programming (EP) uses strategy parameter with self-adaptation. This strategy parameter corresponds to a search step size in solution search algorithm. Exponential evolutionary programming (EEP) uses exponential mutation instead of Gaussian mutation of conventional evolutionary programming (CEP). Therefore, the search step size of EEP depends on the parameter value of exponential distribution as well as self-adaptation. Generally, the strategy parameter has to decrease its value with evolution progress. For the sake of this purpose, the parameter value of EEP has to augment the self-adaptation of EP. However, it is not so easy to find the fine tuning parameter value of EEP with linkage to the self-adaptation in actual computation. Considering these situations, we propose here new EEP (nsEEP) without self-adaptive strategy parameter. Instead of self-adaptation, the parameter value of EEP changes automatically with evolution progress. In this paper, we present new EEP algorithm without self-adaptive strategy parameter. Experimental results show that this new EEP outperforms to other existing EP and obtains excellent high quality solutions with fine tuning parameter value.
引用
收藏
页码:544 / +
页数:3
相关论文
共 50 条
  • [41] Enhanced self-adaptive evolutionary algorithm for numerical optimization
    Xue, Yu
    Zhuang, Yi
    Ni, Tianquan
    Ouyang, Jian
    Wang, Zhou
    [J]. JOURNAL OF SYSTEMS ENGINEERING AND ELECTRONICS, 2012, 23 (06) : 921 - 928
  • [42] A Self-Adaptive Programming Mechanism for Reconfigurable Parsing and Processing
    DUAN Tong
    SHEN Juan
    WANG Peng
    LIU Shiran
    [J]. China Communications, 2016, (S1) : 87 - 97
  • [43] A New Self-Adaptive Approach for Evolutionary Multiobjective Optimization
    Batista, Lucas S.
    Campelo, Felipe
    Guimaraes, Frederico G.
    Ramirez, Jaime A.
    [J]. 2010 IEEE CONGRESS ON EVOLUTIONARY COMPUTATION (CEC), 2010,
  • [44] SaPus: Self-Adaptive Parameter Update Strategy for DNN Training on Multi-GPU Clusters
    Zhang, Zhaorui
    Wang, Choli
    [J]. IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, 2022, 33 (07) : 1569 - 1580
  • [45] Enhanced self-adaptive evolutionary algorithm for numerical optimization
    Yu Xue 1
    2. No.723 Institute of China Shipbuilding Industry Corporation
    3. Science and Technology on Electron-optic Control Laboratory
    [J]. Journal of Systems Engineering and Electronics, 2012, 23 (06) : 921 - 928
  • [46] Self-adaptive evolutionary methods in designing skeletal structures
    Borkowski, Adam
    Nikodem, Piotr
    [J]. ADAPTIVE AND NATURAL COMPUTING ALGORITHMS, PT 1, 2007, 4431 : 102 - +
  • [47] A Self-Adaptive Evolutionary Deception Framework for Community Structure
    Zhao, Jie
    Wang, Zhen
    Cao, Jinde
    Cheong, Kang Hao
    [J]. IEEE TRANSACTIONS ON SYSTEMS MAN CYBERNETICS-SYSTEMS, 2023, 53 (08): : 4954 - 4967
  • [48] Individualized Self-Adaptive Genetic Operators with Adaptive Selection in Genetic Programming
    Fitzgerald, Jeannie
    Ryan, Conor
    [J]. 2013 WORLD CONGRESS ON NATURE AND BIOLOGICALLY INSPIRED COMPUTING (NABIC), 2013, : 232 - 237
  • [49] Self-adaptive selection of the regularization parameter for electromagnetic imaging
    Ciric, IR
    Qin, YM
    [J]. IEEE TRANSACTIONS ON MAGNETICS, 1997, 33 (02) : 1556 - 1559
  • [50] An automatic approach for parameter selection in self-adaptive tracking
    Hall, Daniela
    Emonet, Remi
    Crowley, James L.
    [J]. VISAPP 2006: PROCEEDINGS OF THE FIRST INTERNATIONAL CONFERENCE ON COMPUTER VISION THEORY AND APPLICATIONS, VOL 2, 2006, : 20 - +