Exponential evolutionary programming without self-adaptive strategy parameter

被引:0
|
作者
Narihisa, H. [1 ]
Taniguchi, T. [1 ]
Ohta, M. [1 ]
Katayama, K. [1 ]
机构
[1] Okayama Univ Sci, Dept Informat & Comp Engn, Fac Engn, 1-1 Ridai Cho, Okayama 7000005, Japan
关键词
D O I
10.1109/CEC.2006.1688357
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Evolutionary programming (EP) uses strategy parameter with self-adaptation. This strategy parameter corresponds to a search step size in solution search algorithm. Exponential evolutionary programming (EEP) uses exponential mutation instead of Gaussian mutation of conventional evolutionary programming (CEP). Therefore, the search step size of EEP depends on the parameter value of exponential distribution as well as self-adaptation. Generally, the strategy parameter has to decrease its value with evolution progress. For the sake of this purpose, the parameter value of EEP has to augment the self-adaptation of EP. However, it is not so easy to find the fine tuning parameter value of EEP with linkage to the self-adaptation in actual computation. Considering these situations, we propose here new EEP (nsEEP) without self-adaptive strategy parameter. Instead of self-adaptation, the parameter value of EEP changes automatically with evolution progress. In this paper, we present new EEP algorithm without self-adaptive strategy parameter. Experimental results show that this new EEP outperforms to other existing EP and obtains excellent high quality solutions with fine tuning parameter value.
引用
收藏
页码:544 / +
页数:3
相关论文
共 50 条
  • [31] Self-Adaptive Evolutionary Extreme Learning Machine
    Jiuwen Cao
    Zhiping Lin
    Guang-Bin Huang
    Neural Processing Letters, 2012, 36 : 285 - 305
  • [32] Adapting self-adaptive parameters in evolutionary algorithms
    Liang, KH
    Yao, X
    Newton, CS
    APPLIED INTELLIGENCE, 2001, 15 (03) : 171 - 180
  • [33] Adapting Self-Adaptive Parameters in Evolutionary Algorithms
    Ko-Hsin Liang
    Xin Yao
    Charles S. Newton
    Applied Intelligence, 2001, 15 : 171 - 180
  • [34] A Self-adaptive Penalty Approach for Nonlinear Programming
    Nie, Pu-Yan
    APPLIED MATHEMATICS RESEARCH EXPRESS, 2005, (01) : 1 - 10
  • [35] Evolutionary multiobjective optimization with clustering-based self-adaptive mating restriction strategy
    Li, Xin
    Song, Shenmin
    Zhang, Hu
    SOFT COMPUTING, 2019, 23 (10) : 3303 - 3325
  • [36] A self-adaptive mating restriction strategy based on survival length for evolutionary multiobjective optimization
    Li, Xin
    Zhang, Hu
    Song, Shenmin
    SWARM AND EVOLUTIONARY COMPUTATION, 2018, 43 : 31 - 49
  • [37] Self-Adaptive Evolutionary Info Variational Autoencoder
    Emm, Toby A.
    Zhang, Yu
    COMPUTERS, 2024, 13 (08)
  • [38] Evolutionary multiobjective optimization with clustering-based self-adaptive mating restriction strategy
    Xin Li
    Shenmin Song
    Hu Zhang
    Soft Computing, 2019, 23 : 3303 - 3325
  • [39] A PARAMETER IDENTIFICATION SELF-ADAPTIVE CONTROL SYSTEM
    PARRY, IS
    HOUPIS, CH
    IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 1970, AC15 (04) : 462 - &
  • [40] An augmented self-adaptive parameter control in evolutionary computation: A case study for the berth scheduling problem
    Kavoosi, Masoud
    Dulebenets, Maxim A.
    Abioye, Olumide F.
    Pasha, Junayed
    Wang, Hui
    Chi, Hongmei
    ADVANCED ENGINEERING INFORMATICS, 2019, 42