A new method on Box dimension of Weyl-Marchaud fractional derivative of Weierstrass function

被引:12
|
作者
Yao, Kui [1 ]
Chen, Haotian [1 ]
Peng, W. L. [1 ]
Wang, Zekun [1 ]
Yao, Jia [1 ]
Wu, Yipeng [1 ]
机构
[1] Army Engn Univ PLA, Nanjing 211101, Peoples R China
基金
中国国家自然科学基金;
关键词
Weyl-Marchaud fractional derivative; Box dimension; Oscillation and iteration estimating; Weierstrass function;
D O I
10.1016/j.chaos.2020.110317
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
A new method is applied to calculating fractal dimensions of fractional calculus of some fractal functions, by this method, we obtain Box dimension of Weyl-Marchaud fractional derivative of Weierstrass function. (C) 2020 Published by Elsevier Ltd.
引用
收藏
页数:5
相关论文
共 50 条
  • [31] A New Box-Counting Method for Image Fractal Dimension Estimation
    Xue, Song
    Jiang, Xinsheng
    Duan, Jimiao
    [J]. PROCEEDINGS OF 2017 3RD IEEE INTERNATIONAL CONFERENCE ON COMPUTER AND COMMUNICATIONS (ICCC), 2017, : 1786 - 1791
  • [32] Local Fractional Function Decomposition Method for Solving Inhomogeneous Wave Equations with Local Fractional Derivative
    Wang, Shun-Qin
    Yang, Yong-Ju
    Jassim, Hassan Kamil
    [J]. ABSTRACT AND APPLIED ANALYSIS, 2014,
  • [33] A new wavelet method for fractional integro-differential equations with ψ-Caputo fractional derivative
    Heydari, M. H.
    Razzaghi, M.
    [J]. MATHEMATICS AND COMPUTERS IN SIMULATION, 2024, 217 : 97 - 108
  • [34] A new fractional derivative involving the normalized sinc function without singular kernel
    Xiao-Jun Yang
    Feng Gao
    J. A. Tenreiro Machado
    Dumitru Baleanu
    [J]. The European Physical Journal Special Topics, 2017, 226 : 3567 - 3575
  • [35] A new fractional derivative involving the normalized sinc function without singular kernel
    Yang, Xiao-Jun
    Gao, Feng
    Machado, J. A. Tenreiro
    Baleanu, Dumitru
    [J]. EUROPEAN PHYSICAL JOURNAL-SPECIAL TOPICS, 2017, 226 (16-18): : 3567 - 3575
  • [36] Some results on the new fractional derivative of generalized k-Wright function
    Dubey, Ravi Shanker
    Singh, Yudhveer
    Agarwal, Pankaj
    Saini, G. L.
    Singh, Vijender
    [J]. JOURNAL OF INTERDISCIPLINARY MATHEMATICS, 2020, 23 (02) : 607 - 615
  • [37] A new iterative method with ρ-Laplace transform for solving fractional differential equations with Caputo generalized fractional derivative
    Bhangale, Nikita
    Kachhia, Krunal B.
    Gomez-Aguilar, J. F.
    [J]. ENGINEERING WITH COMPUTERS, 2022, 38 (03) : 2125 - 2138
  • [38] A Method of Finding Source Function for Inverse Diffusion Problem with Time-Fractional Derivative
    Gulkac, Vildan
    [J]. ADVANCES IN MATHEMATICAL PHYSICS, 2016, 2016
  • [39] A new Rabotnov fractional-exponential function-based fractional derivative for diffusion equation under external force
    Kumar, Sunil
    Nisar, Kottakkaran Sooppy
    Kumar, Ranbir
    Cattani, Carlo
    Samet, Bessem
    [J]. MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2020, 43 (07) : 4460 - 4471
  • [40] New Multiplicity Results for a Boundary Value Problem Involving a ψ-Caputo Fractional Derivative of a Function with Respect to Another Function
    Li, Yankai
    Li, Dongping
    Chen, Fangqi
    Liu, Xiangjing
    [J]. FRACTAL AND FRACTIONAL, 2024, 8 (06)