A new fractional derivative involving the normalized sinc function without singular kernel

被引:95
|
作者
Yang, Xiao-Jun [1 ,2 ]
Gao, Feng [1 ,2 ]
Machado, J. A. Tenreiro [3 ]
Baleanu, Dumitru [4 ,5 ]
机构
[1] China Univ Min & Technol, State Key Lab Geomech & Deep Underground Engn, Xuzhou 221116, Jiangsu, Peoples R China
[2] China Univ Min & Technol, Sch Mech & Civil Engn, Xuzhou 221116, Jiangsu, Peoples R China
[3] Polytech Porto, Inst Engn, Dept Elect Engn, Rua Dr Antonio Bernardino de Almeida, P-4249015 Porto, Portugal
[4] Cankya Univ, Dept Math, Ogretmenler Cad 14, TR-06530 Ankara, Turkey
[5] Inst Space Sci, Bucharest, Romania
来源
EUROPEAN PHYSICAL JOURNAL-SPECIAL TOPICS | 2017年 / 226卷 / 16-18期
关键词
DIFFUSION; EQUATION; RELAXATION; CALCULUS; MODELS;
D O I
10.1140/epjst/e2018-00020-2
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
In this paper, a new fractional derivative involving the normalized sinc function without singular kernel is proposed. The Laplace transform is used to find the analytical solution of the anomalous heat-diffusion problems. The comparative results between classical and fractional-order operators are presented. The results are significant in the analysis of one-dimensional anomalous heat-transfer problems.
引用
收藏
页码:3567 / 3575
页数:9
相关论文
共 50 条
  • [1] A new fractional derivative involving the normalized sinc function without singular kernel
    Xiao-Jun Yang
    Feng Gao
    J. A. Tenreiro Machado
    Dumitru Baleanu
    [J]. The European Physical Journal Special Topics, 2017, 226 : 3567 - 3575
  • [2] FRACTIONAL MAXWELL FLUID WITH FRACTIONAL DERIVATIVE WITHOUT SINGULAR KERNEL
    Gao, Feng
    Yang, Xiao-Jun
    [J]. THERMAL SCIENCE, 2016, 20 : S871 - S877
  • [3] A fractional order model for Ebola Virus with the new Caputo fractional derivative without singular kernel
    Dokuyucu, Mustafa Ali
    Dutta, Hemen
    [J]. CHAOS SOLITONS & FRACTALS, 2020, 134
  • [4] Modeling diffusive transport with a fractional derivative without singular kernel
    Gomez-Aguilar, J. F.
    Lopez-Lopez, M. G.
    Alvarado-Martinez, V. M.
    Reyes-Reyes, J.
    Adam-Medina, M.
    [J]. PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2016, 447 : 467 - 481
  • [6] A NEW FRACTIONAL DERIVATIVE WITHOUT SINGULAR KERNEL Application to the Modelling of the Steady Heat Flow
    Yang, Xiao-Jun
    Srivastava, Hari M.
    Machado, J. A. Tenreiro
    [J]. THERMAL SCIENCE, 2016, 20 (02): : 753 - 756
  • [7] Analysis of Riccati Differential Equations within a New Fractional Derivative without Singular Kernel
    Jafari, Hossein
    Lia, Atena
    Tejadodi, Haleh
    Baleanu, Dumitru
    [J]. FUNDAMENTA INFORMATICAE, 2017, 151 (1-4) : 161 - 171
  • [8] ANALYSIS AND APPLICATION OF DIFFUSION EQUATIONS INVOLVING A NEW FRACTIONAL DERIVATIVE WITHOUT SINGULAR KERNAL
    Zhang, Lihong
    Ahmad, Bashir
    Wang, Guotao
    [J]. ELECTRONIC JOURNAL OF DIFFERENTIAL EQUATIONS, 2017,
  • [9] ON STEADY HEAT FLOW PROBLEM INVOLVING YANG-SRIVASTAVA-MACHADO FRACTIONAL DERIVATIVE WITHOUT SINGULAR KERNEL
    Yang, Ai-Min
    Han, Yang
    Li, Jie
    Liu, Wei-Xing
    [J]. THERMAL SCIENCE, 2016, 20 : S717 - S721
  • [10] Duplication in a model of rock fracture with fractional derivative without singular kernel
    Goufo, Emile F. Doungmo
    Pene, Morgan Kamga
    Mwambakana, Jeanine N.
    [J]. OPEN MATHEMATICS, 2015, 13 : 839 - 846