MEG and EEG data analysis with MNE-Python']Python

被引:1557
|
作者
Gramfort, Alexandre [1 ,2 ,3 ,4 ]
Luessi, Martin [2 ,3 ]
Larson, Eric [5 ]
Engemann, Denis A. [6 ,7 ]
Strohmeier, Daniel [8 ]
Brodbeck, Christian [9 ]
Goj, Roman [10 ]
Jas, Mainak [11 ,12 ]
Brooks, Teon [9 ]
Parkkonen, Lauri [11 ,12 ]
Haemaelaeinen, Matti [2 ,3 ,12 ]
机构
[1] Telecom ParisTech, CNRS LTCI, Inst Mines Telecom, F-75014 Paris, France
[2] Massachusetts Gen Hosp, Athinoula A Martinos Ctr Biomed Imaging, Charlestown, MA USA
[3] Harvard Univ, Sch Med, Charlestown, MA USA
[4] CEA Saclay, NeuroSpin, F-91191 Gif Sur Yvette, France
[5] Univ Washington, Inst Learning & Brain Sci, Seattle, WA 98195 USA
[6] Forschungszentrum Juelich, Inst Neurosci & Med Cognit Neurosci INM 3, Julich, Germany
[7] Univ Hosp, Dept Psychiat, Brain Imaging Lab, Cologne, Germany
[8] Ilmenau Univ Technol, Inst Biomed Engn & Informat, Ilmenau, Germany
[9] NYU, Dept Psychol, New York, NY 10003 USA
[10] Univ Stirling, Sch Nat Sci, Psychol Imaging Lab, Stirling FK9 4LA, Scotland
[11] Aalto Univ, Sch Sci, Dept Biomed Engn & Computat Sci, Espoo, Finland
[12] Aalto Univ, Sch Sci, Brain Res Unit, OV Lounasmaa Lab, Espoo, Finland
基金
美国国家科学基金会; 瑞士国家科学基金会;
关键词
electroencephalography (EEG); magnetoencephalography (MEG); neuroimaging; software; !text type='python']python[!/text; open-source; SURFACE-BASED ANALYSIS; BRAIN; FMRI; DIPOLE;
D O I
10.3389/fnins.2013.00267
中图分类号
Q189 [神经科学];
学科分类号
071006 ;
摘要
Magnetoencephalography and electroencephalography (M/EEG) measure the weak electromagnetic signals generated by neuronal activity in the brain. Using these signals to characterize and locate neural activation in the brain is a challenge that requires expertise in physics, signal processing, statistics, and numerical methods. As part of the MNE software suite, MNE-Python is an open-source software package that addresses this challenge by providing state-of-the-art algorithms implemented in Python that cover multiple methods of data preprocessing, source localization, statistical analysis, and estimation of functional connectivity between distributed brain regions. All algorithms and utility functions are implemented in a consistent manner with well-documented interfaces, enabling users to create M/EEG data analysis pipelines by writing Python scripts. Moreover, MNE-Python is tightly integrated with the core Python libraries for scientific comptutation (NumPy, SciPy) and visualization (matplotlib and Mayavi), as well as the greater neuroimaging ecosystem in Python via the Nibabel package. The code is provided under the new BSD license allowing code reuse, even in commercial products. Although MNE-Python has only been under heavy development for a couple of years, it has rapidly evolved with expanded analysis capabilities and pedagogical tutorials because multiple labs have collaborated during code development to help share best practices. MNE-Python also gives easy access to preprocessed datasets, helping users to get started quickly and facilitating reproducibility of methods by other researchers. Full documentation, including dozens of examples, is available at http://martinos.org/mne.
引用
收藏
页数:13
相关论文
共 50 条
  • [21] MetPy: A Meteorological Python']Python Library for Data Analysis and Visualization
    May, Ryan M.
    Goebbert, Kevin H.
    Thielen, Jonathan E.
    Leeman, John R.
    Camron, M. Drew
    Bruick, Zachary
    Bruning, Eric C.
    Manser, Russell P.
    Arms, Sean C.
    Marsh, Patrick T.
    [J]. BULLETIN OF THE AMERICAN METEOROLOGICAL SOCIETY, 2022, 103 (10) : E2273 - E2284
  • [22] EMDA: A Python']Python package for Electron Microscopy Data Analysis
    Warshamanage, Rangana
    Yamashita, Keitaro
    Murshudov, Garib N.
    [J]. JOURNAL OF STRUCTURAL BIOLOGY, 2022, 214 (01)
  • [23] yupi: Generation, tracking and analysis of trajectory data in Python']Python
    Reyes, A.
    Viera-Lopez, G.
    Morgado-Vega, J. J.
    Altshuler, E.
    [J]. ENVIRONMENTAL MODELLING & SOFTWARE, 2023, 163
  • [24] MPDAF - A Python']Python Package for the Analysis of VLT/MUSE Data
    Piqueras, L.
    Conseil, S.
    Shepherd, M.
    Bacon, R.
    Leclercq, F.
    Richard, J.
    [J]. ASTRONOMICAL DATA ANALYSIS SOFTWARE AND SYSTEMS XXVI, 2019, 521 : 545 - 548
  • [25] Analysis of Functional Connectivity and Oscillatory Power Using DICS: From Raw MEG Data to Group-Level Statistics in Python']Python
    van Vliet, Marijn
    Liljestrom, Mia
    Aro, Susanna
    Salmelin, Riitta
    Kujala, Jan
    [J]. FRONTIERS IN NEUROSCIENCE, 2018, 12
  • [26] NICI Python']Python Data Reduction
    Zarate, Nelson
    Artigua, Etienne
    Hartung, Markus
    Labrie, Kathleen
    [J]. ASTRONOMICAL DATA ANALYSIS SOFTWARE AND SYSTEMS XIX, 2010, 434 : 481 - +
  • [27] Introduction to data science with Python']Python
    Monteiro, M.
    [J]. EUROPEAN JOURNAL OF CLINICAL INVESTIGATION, 2021, 51 : 14 - 14
  • [28] Geographic Data Science With Python']Python
    Podgorski, Krzysztof
    [J]. INTERNATIONAL STATISTICAL REVIEW, 2024, 92 (01) : 134 - 135
  • [29] Data Engineering for HPC with Python']Python
    Abeykoon, Vibhatha
    Perera, Niranda
    Widanage, Chathura
    Kamburugamuve, Supun
    Kanewalat, Thejaka Amila
    Maithree, Hasara
    Wickramasinghe, Pulasthi
    Uyar, Ahmet
    Fox, Geoffrey
    [J]. PROCEEDINGS OF PYHPC 2020: 2020 IEEE/ACM 9TH WORKSHOP ON PYTHON FOR HIGH-PERFORMANCE AND SCIENTIFIC COMPUTING (PYHPC), 2020, : 13 - 21
  • [30] pyerrors: A python']python framework for error analysis of Monte Carlo data
    Joswig, Fabian
    Kuberski, Simon
    Kuhlmann, Justus T.
    Neuendorf, Jan
    [J]. COMPUTER PHYSICS COMMUNICATIONS, 2023, 288