MEG and EEG data analysis with MNE-Python']Python

被引:1559
|
作者
Gramfort, Alexandre [1 ,2 ,3 ,4 ]
Luessi, Martin [2 ,3 ]
Larson, Eric [5 ]
Engemann, Denis A. [6 ,7 ]
Strohmeier, Daniel [8 ]
Brodbeck, Christian [9 ]
Goj, Roman [10 ]
Jas, Mainak [11 ,12 ]
Brooks, Teon [9 ]
Parkkonen, Lauri [11 ,12 ]
Haemaelaeinen, Matti [2 ,3 ,12 ]
机构
[1] Telecom ParisTech, CNRS LTCI, Inst Mines Telecom, F-75014 Paris, France
[2] Massachusetts Gen Hosp, Athinoula A Martinos Ctr Biomed Imaging, Charlestown, MA USA
[3] Harvard Univ, Sch Med, Charlestown, MA USA
[4] CEA Saclay, NeuroSpin, F-91191 Gif Sur Yvette, France
[5] Univ Washington, Inst Learning & Brain Sci, Seattle, WA 98195 USA
[6] Forschungszentrum Juelich, Inst Neurosci & Med Cognit Neurosci INM 3, Julich, Germany
[7] Univ Hosp, Dept Psychiat, Brain Imaging Lab, Cologne, Germany
[8] Ilmenau Univ Technol, Inst Biomed Engn & Informat, Ilmenau, Germany
[9] NYU, Dept Psychol, New York, NY 10003 USA
[10] Univ Stirling, Sch Nat Sci, Psychol Imaging Lab, Stirling FK9 4LA, Scotland
[11] Aalto Univ, Sch Sci, Dept Biomed Engn & Computat Sci, Espoo, Finland
[12] Aalto Univ, Sch Sci, Brain Res Unit, OV Lounasmaa Lab, Espoo, Finland
基金
瑞士国家科学基金会; 美国国家科学基金会;
关键词
electroencephalography (EEG); magnetoencephalography (MEG); neuroimaging; software; !text type='python']python[!/text; open-source; SURFACE-BASED ANALYSIS; BRAIN; FMRI; DIPOLE;
D O I
10.3389/fnins.2013.00267
中图分类号
Q189 [神经科学];
学科分类号
071006 ;
摘要
Magnetoencephalography and electroencephalography (M/EEG) measure the weak electromagnetic signals generated by neuronal activity in the brain. Using these signals to characterize and locate neural activation in the brain is a challenge that requires expertise in physics, signal processing, statistics, and numerical methods. As part of the MNE software suite, MNE-Python is an open-source software package that addresses this challenge by providing state-of-the-art algorithms implemented in Python that cover multiple methods of data preprocessing, source localization, statistical analysis, and estimation of functional connectivity between distributed brain regions. All algorithms and utility functions are implemented in a consistent manner with well-documented interfaces, enabling users to create M/EEG data analysis pipelines by writing Python scripts. Moreover, MNE-Python is tightly integrated with the core Python libraries for scientific comptutation (NumPy, SciPy) and visualization (matplotlib and Mayavi), as well as the greater neuroimaging ecosystem in Python via the Nibabel package. The code is provided under the new BSD license allowing code reuse, even in commercial products. Although MNE-Python has only been under heavy development for a couple of years, it has rapidly evolved with expanded analysis capabilities and pedagogical tutorials because multiple labs have collaborated during code development to help share best practices. MNE-Python also gives easy access to preprocessed datasets, helping users to get started quickly and facilitating reproducibility of methods by other researchers. Full documentation, including dozens of examples, is available at http://martinos.org/mne.
引用
收藏
页数:13
相关论文
共 50 条
  • [1] PyEEG: An Open Source Python']Python Module for EEG/MEG Feature Extraction
    Bao, Forrest Sheng
    Liu, Xin
    Zhang, Christina
    [J]. COMPUTATIONAL INTELLIGENCE AND NEUROSCIENCE, 2011, 2011
  • [2] MNE software for processing MEG and EEG data
    Gramfort, Alexandre
    Luessi, Martin
    Larson, Eric
    Engemann, Denis A.
    Strohmeier, Daniel
    Brodbeck, Christian
    Parkkonen, Lauri
    Haemaelaeinen, Matti S.
    [J]. NEUROIMAGE, 2014, 86 : 446 - 460
  • [3] Geophysical data analysis using Python']Python
    Sáenz, J
    Zubillaga, J
    Fernández, J
    [J]. COMPUTERS & GEOSCIENCES, 2002, 28 (04) : 457 - 465
  • [4] Python']Python Scripting for CIAO Data Analysis
    Galle, Elizabeth C.
    Anderson, Craig S.
    Bonaventura, Nina R.
    Burke, D. J.
    Fruscione, Antonella
    Lee, Nicholas P.
    McDowell, Jonathan C.
    [J]. ASTRONOMICAL DATA ANALYSIS SOFTWARE AND SYSTEMS XX, 2011, 442 : 131 - 134
  • [5] naplib-python']python: Neural acoustic data processing and analysis tools in python']python
    Mischler, Gavin
    Raghavan, Vinay
    Keshishian, Menoua
    Mesgarani, Nima
    [J]. SOFTWARE IMPACTS, 2023, 17
  • [6] Information-Theoretical Analysis of EEG Microstate Sequences in Python']Python
    von Wegner, Frederic
    Laufs, Helmut
    [J]. FRONTIERS IN NEUROINFORMATICS, 2018, 12
  • [7] pyjeo: A Python']Python Package for the Analysis of Geospatial Data
    Kempeneers, Pieter
    Pesek, Ondrej
    De Marchi, Davide
    Soille, Pierre
    [J]. ISPRS INTERNATIONAL JOURNAL OF GEO-INFORMATION, 2019, 8 (10)
  • [8] Graphical analysis of educational data using Python']Python
    Swacha, Jakub
    [J]. E-MENTOR, 2016, (02): : 13 - 21
  • [9] Crates and Transform: Python']Python Interfaces for Data Analysis
    Lyn, Janine
    Cresitello-Dittmar, Mark
    Evans, Ian
    Evans, Janet DePonte
    [J]. ASTRONOMICAL DATA ANALYSIS SOFTWARE AND SYSTEMS XXIII, 2014, 485 : 339 - 342
  • [10] PYSAT: Python']Python Satellite Data Analysis Toolkit
    Stoneback, R. A.
    Burrell, A. G.
    Klenzing, J.
    Depew, M. D.
    [J]. JOURNAL OF GEOPHYSICAL RESEARCH-SPACE PHYSICS, 2018, 123 (06) : 5271 - 5283