Carbon nanotube junctions obtained by pulsed liquid injection chemical vapour deposition

被引:6
|
作者
Garcia, A. G. [1 ]
Duarte Correa, M. J. [1 ]
Perez Robles, J. F. [1 ]
Romero, A. H. [1 ]
Velasco-Santos, C. [2 ,3 ]
Apatiga, L. M. [2 ]
机构
[1] Inst Politecn Nacl, Ctr Invest & Estudios Avanzados, Queretaro 76230, Mexico
[2] UNAM, Ctr Fis Aplicada & Tecnol Avanzada, Queretaro 76000, Mexico
[3] Inst Tecnol Queretaro, Queretaro 76000, Mexico
关键词
CNT junctions; CNT growth mechanism; PLICVD; RAMAN-SPECTROSCOPY;
D O I
10.1016/j.diamond.2010.02.034
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
The effect of substrate surface roughness on the synthesis of carbon nanotube (CNT) junctions is studied. CNTs were obtained by a pulsed liquid injection chemical vapour deposition system (PLICVD) and grown on quartz substrates with different roughnesses. Nickel particles were used as catalyst and acetone as the carbon precursor. Results shown that CNTs growth depend strongly on the substrate irregularity. When roughness is present, the presence of CNT junctions are increased. On the quartz surface, without any modification of roughness, CNTs are not obtained. Thus, a growth mechanism for CNT junctions, based on the substrate roughness is suggested. This method represents an important alternative to produce CNTs for applying them in nanoelectronic devices. (C) 2010 Elsevier B.V. All rights reserved.
引用
收藏
页码:1052 / 1057
页数:6
相关论文
共 50 条
  • [41] Synthesis and mechanism perspectives of a carbon nanotube aerogel via a floating catalyst chemical vapour deposition method
    Abdullah, Hayder Baqer
    Ramli, Irmawati
    Ismail, Ismayadi
    Yusof, Nor Azah
    BULLETIN OF MATERIALS SCIENCE, 2019, 42 (05)
  • [42] Synthesis and mechanism perspectives of a carbon nanotube aerogel via a floating catalyst chemical vapour deposition method
    Hayder Baqer Abdullah
    Irmawati Ramli
    Ismayadi Ismail
    Nor Azah Yusof
    Bulletin of Materials Science, 2019, 42
  • [43] CARBON/CARBON COMPOSITES PREPARED BY CHEMICAL VAPOUR DEPOSITION.
    Marinkovic, S.
    Dimitrijevic, S.
    1600, (23):
  • [44] Pulsed plasma vapour deposition of carbon materials: Advantages and challenges
    Corbella, Carles
    Aijaz, Asim
    Kubart, Tomas
    Lin, Li
    Portal, Sabine
    Keidar, Michael
    CARBON, 2025, 232
  • [45] Iron-Filled Carbon Nanotube Arrays Obtained by Floating Catalyst Chemical Vapor Deposition
    Cheng, Jin
    Zou, Xiaoping
    Yang, Gangqiang
    Lue, Xueming
    Wei, Cuiliu
    Sun, Zhe
    Feng, Hongying
    Yang, Yuan
    MULTI-FUNCTIONAL MATERIALS AND STRUCTURES III, PTS 1 AND 2, 2010, 123-125 : 711 - 714
  • [46] Investigation of alumina-silica films deposited by pulsed injection metal-organic chemical vapour deposition
    Teiserskis, Arunas
    Zukova, Anna
    Gun'ko, Yurii K.
    Grudinkin, Sergei
    Perova, Tatiana S.
    Moore, Robert A.
    THIN SOLID FILMS, 2006, 515 (04) : 1830 - 1834
  • [47] Hot filament chemical vapour deposition processing of titanate nanotube coatings
    Godbole, VP
    Kim, GS
    Dar, MA
    Kim, YS
    Seo, HK
    Khang, G
    Shin, HS
    NANOTECHNOLOGY, 2005, 16 (08) : 1186 - 1191
  • [48] Growth mechanism of Y-Junctions and related carbon nanotube junctions synthesized by Au-catalyzed chemical vapor deposition
    Luo, Chunxiang
    Liu, Liany
    Jiang, Kaili
    Zhang, Lina
    Li, Qunqing
    Fan, Shoushan
    CARBON, 2008, 46 (03) : 440 - 444
  • [49] Nanosoldering carbon nanotube junctions with metal via local chemical vapor deposition for improved device performance
    Do, Jae-Won
    Estrada, David
    Xie, Xu
    Chang, Noel
    Rogers, John
    Pop, Eric
    Lyding, Joseph
    Girolami, Gregory
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2017, 253
  • [50] Ultraviolet assisted injection liquid source chemical vapour deposition (UVILS-CVD) of tantalum pentoxide
    Kelly, PV
    Mooney, MB
    Beechinor, JT
    O'Sullivan, BJ
    Hurley, PK
    Crean, GM
    Zhang, JY
    Boyd, IW
    Paillous, M
    Jimenez, C
    Senateur, JP
    ADVANCED MATERIALS FOR OPTICS AND ELECTRONICS, 2000, 10 (3-5): : 115 - 122