Carbon nanotube junctions obtained by pulsed liquid injection chemical vapour deposition

被引:6
|
作者
Garcia, A. G. [1 ]
Duarte Correa, M. J. [1 ]
Perez Robles, J. F. [1 ]
Romero, A. H. [1 ]
Velasco-Santos, C. [2 ,3 ]
Apatiga, L. M. [2 ]
机构
[1] Inst Politecn Nacl, Ctr Invest & Estudios Avanzados, Queretaro 76230, Mexico
[2] UNAM, Ctr Fis Aplicada & Tecnol Avanzada, Queretaro 76000, Mexico
[3] Inst Tecnol Queretaro, Queretaro 76000, Mexico
关键词
CNT junctions; CNT growth mechanism; PLICVD; RAMAN-SPECTROSCOPY;
D O I
10.1016/j.diamond.2010.02.034
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
The effect of substrate surface roughness on the synthesis of carbon nanotube (CNT) junctions is studied. CNTs were obtained by a pulsed liquid injection chemical vapour deposition system (PLICVD) and grown on quartz substrates with different roughnesses. Nickel particles were used as catalyst and acetone as the carbon precursor. Results shown that CNTs growth depend strongly on the substrate irregularity. When roughness is present, the presence of CNT junctions are increased. On the quartz surface, without any modification of roughness, CNTs are not obtained. Thus, a growth mechanism for CNT junctions, based on the substrate roughness is suggested. This method represents an important alternative to produce CNTs for applying them in nanoelectronic devices. (C) 2010 Elsevier B.V. All rights reserved.
引用
收藏
页码:1052 / 1057
页数:6
相关论文
共 50 条
  • [1] Carbon nanotube films obtained by thermal chemical vapour deposition
    Nerushev, OA
    Sveningsson, M
    Falk, LKL
    Rohmund, F
    JOURNAL OF MATERIALS CHEMISTRY, 2001, 11 (04) : 1122 - 1132
  • [2] Preparation of CNx/Carbon Nanotube Intramolecular Junctions by Switching Gas Sources in Continuous Chemical Vapour Deposition
    Cao, Yong
    Liu, Bingtao
    Jiao, Qingze
    Zhao, Yun
    SOUTH AFRICAN JOURNAL OF CHEMISTRY-SUID-AFRIKAANSE TYDSKRIF VIR CHEMIE, 2011, 64 : 67 - 70
  • [3] Ferroelectric PbTiO3 films grown by pulsed liquid injection metalorganic chemical vapour deposition
    Bartasyte, A.
    Abrutis, A.
    Jimenez, C.
    Weiss, F.
    Chaix-Pluchery, O.
    Saltyte, Z.
    FERROELECTRICS, 2007, 353 : 538 - 549
  • [4] Effect of ammonia on chemical vapour deposition and carbon nanotube nucleation mechanisms
    Eveleens, Clothilde A.
    Page, Alister J.
    NANOSCALE, 2017, 9 (04) : 1727 - 1737
  • [5] Continuous flow chemical vapour deposition of carbon nanotube sea urchins
    de La Verpilliere, Jean
    Jessl, Sarah
    Saeed, Khuzaimah
    Ducati, Caterina
    De Volder, Michael
    Boies, Adam
    NANOSCALE, 2018, 10 (16) : 7780 - 7791
  • [6] Biomorphic carbon-nanotube composites synthesised by chemical vapour deposition
    Park, Junggyu
    Kim, Seyoung
    Han, Insub
    Ryu, Sungsoo
    Kim, Ikjin
    INTERNATIONAL JOURNAL OF NANOTECHNOLOGY, 2018, 15 (6-7) : 460 - 473
  • [7] The Effect of Pressure on the Dimensions of Carbon Nanotubes Obtained by the Chemical Vapour Deposition
    Sharma, Anshu
    Vijay, Y. K.
    ADVANCED SCIENCE LETTERS, 2011, 4 (02) : 586 - 590
  • [8] The role of carbon precursor on carbon nanotube chirality in floating catalyst chemical vapour deposition
    Barnard, J. S.
    Paukner, C.
    Koziol, K. K.
    NANOSCALE, 2016, 8 (39) : 17262 - 17270
  • [9] CNx/carbon nanotube junctions synthesized by microwave chemical vapor deposition
    Ma, XC
    Wang, EG
    APPLIED PHYSICS LETTERS, 2001, 78 (07) : 978 - 980
  • [10] The growth of carbon nanotube multilayers on ceramic μ-particles by catalytic chemical vapour deposition
    Dichiara, A.
    Bai, J.
    DIAMOND AND RELATED MATERIALS, 2012, 29 : 52 - 58