Statistical analysis of variability in TnSeq data across conditions using zero-inflated negative binomial regression

被引:12
|
作者
Subramaniyam, Siddharth [1 ]
DeJesus, Michael A. [2 ]
Zaveri, Anisha [3 ]
Smith, Clare M. [4 ]
Baker, Richard E. [4 ]
Ehrt, Sabine [3 ]
Schnappinger, Dirk [3 ]
Sassetti, Christopher M. [4 ]
Ioerger, Thomas R. [1 ]
机构
[1] Texas A&M Univ, Dept Comp Sci & Engn, College Stn, TX 77843 USA
[2] Rockefeller Univ, 1230 York Ave, New York, NY 10021 USA
[3] Weill Cornell Med Coll, Dept Microbiol & Immunol, New York, NY USA
[4] Univ Massachusetts, Dept Microbiol & Physiol Syst, Med Sch, Worcester, MA USA
关键词
TnSeq; Transposon insertion library; Essentiality; Zero-inflated negative binomial distribution; Mycobacterium tuberculosis; TRANSPOSITION; REQUIRES; GROWTH;
D O I
10.1186/s12859-019-3156-z
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Background Deep sequencing of transposon mutant libraries (or TnSeq) is a powerful method for probing essentiality of genomic loci under different environmental conditions. Various analytical methods have been described for identifying conditionally essential genes whose tolerance for insertions varies between two conditions. However, for large-scale experiments involving many conditions, a method is needed for identifying genes that exhibit significant variability in insertions across multiple conditions. Results In this paper, we introduce a novel statistical method for identifying genes with significant variability of insertion counts across multiple conditions based on Zero-Inflated Negative Binomial (ZINB) regression. Using likelihood ratio tests, we show that the ZINB distribution fits TnSeq data better than either ANOVA or a Negative Binomial (in a generalized linear model). We use ZINB regression to identify genes required for infection of M. tuberculosis H37Rv in C57BL/6 mice. We also use ZINB to perform a analysis of genes conditionally essential in H37Rv cultures exposed to multiple antibiotics. Conclusions Our results show that, not only does ZINB generally identify most of the genes found by pairwise resampling (and vastly out-performs ANOVA), but it also identifies additional genes where variability is detectable only when the magnitudes of insertion counts are treated separately from local differences in saturation, as in the ZINB model.
引用
收藏
页数:15
相关论文
共 50 条
  • [21] Improved shrinkage estimators in zero-inflated negative binomial regression model
    Zandi, Zahra
    Bevrani, Hossein
    Belaghi, Reza Arabi
    HACETTEPE JOURNAL OF MATHEMATICS AND STATISTICS, 2021, 50 (06): : 1855 - 1876
  • [22] Modeling citrus huanglongbing data using a zero-inflated negative binomial distribution
    de Almeida, Eudmar Paiva
    Janeiro, Vanderly
    Guedes, Terezinha Aparecida
    Mulati, Fabio
    Pedroza Carneiro, Jose Walter
    de Carvalho Nunes, William Mario
    ACTA SCIENTIARUM-AGRONOMY, 2016, 38 (03): : 299 - 306
  • [23] A Score Test for Testing a Marginalized Zero-Inflated Poisson Regression Model Against a Marginalized Zero-Inflated Negative Binomial Regression Model
    Gul Inan
    John Preisser
    Kalyan Das
    Journal of Agricultural, Biological and Environmental Statistics, 2018, 23 : 113 - 128
  • [24] A Score Test for Testing a Marginalized Zero-Inflated Poisson Regression Model Against a Marginalized Zero-Inflated Negative Binomial Regression Model
    Inan, Gul
    Preisser, John
    Das, Kalyan
    JOURNAL OF AGRICULTURAL BIOLOGICAL AND ENVIRONMENTAL STATISTICS, 2018, 23 (01) : 113 - 128
  • [25] Zero-Inflated INGARCH Using Conditional Poisson and Negative Binomial: Data Application
    Yoon, J. E.
    Hwang, S. Y.
    KOREAN JOURNAL OF APPLIED STATISTICS, 2015, 28 (03) : 583 - 592
  • [26] The Zero-Inflated Negative Binomial Semiparametric Regression Model: Application to Number of Failing Grades Data
    Aráujo E.G.
    Vasconcelos J.C.S.
    dos Santos D.P.
    Ortega E.M.M.
    de Souza D.
    Zanetoni J.P.F.
    Annals of Data Science, 2023, 10 (04) : 991 - 1006
  • [27] Early warning and predicting of COVID-19 using zero-inflated negative binomial regression model and negative binomial regression model
    Zhou, Wanwan
    Huang, Daizheng
    Liang, Qiuyu
    Huang, Tengda
    Wang, Xiaomin
    Pei, Hengyan
    Chen, Shiwen
    Liu, Lu
    Wei, Yuxia
    Qin, Litai
    Xie, Yihong
    BMC INFECTIOUS DISEASES, 2024, 24 (01)
  • [28] The analysis of zero-inflated count data: Beyond zero-inflated Poisson regression.
    Loeys, Tom
    Moerkerke, Beatrijs
    De Smet, Olivia
    Buysse, Ann
    BRITISH JOURNAL OF MATHEMATICAL & STATISTICAL PSYCHOLOGY, 2012, 65 (01): : 163 - 180
  • [29] Analyzing ingrowth using zero-inflated negative binomial models
    Lappi, Juha
    Pukkala, Timo
    SILVA FENNICA, 2020, 54 (04) : 1 - 19
  • [30] Research on the Yangtze River Accident Casualties Using Zero-inflated Negative Binomial Regression Technique
    Wang Hao
    Yang Ya-dong
    Ma Yong
    2016 IEEE INTERNATIONAL CONFERENCE ON INTELLIGENT TRANSPORTATION ENGINEERING (ICITE), 2016, : 72 - 75