Zero-Inflated INGARCH Using Conditional Poisson and Negative Binomial: Data Application

被引:2
|
作者
Yoon, J. E. [1 ]
Hwang, S. Y. [1 ]
机构
[1] Sookmyung Womens Univ, Dept Stat, Seoul 140742, South Korea
关键词
integer-valued time series; conditional Poisson; zero-inflated INGARCH;
D O I
10.5351/KJAS.2015.28.3.583
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Zero-inflation has recently attracted much attention in integer-valued time series. This article deals with conditional variance (volatility) modeling for the zero-inflated count time series. We incorporate zero-inflation property into integer-valued GARCH (INGARCH) via conditional Poisson and negative binomial marginals. The Cholera frequency time series is analyzed as a data application. Estimation is carried out using EM-algorithm as suggested by Zhu (2012).
引用
下载
收藏
页码:583 / 592
页数:10
相关论文
共 50 条
  • [1] POISSON AND NEGATIVE BINOMIAL REGRESSION MODELS FOR ZERO-INFLATED DATA: AN EXPERIMENTAL STUDY
    Yildirim, Gizem
    Kaciranlar, Selahattin
    Yildirim, Hasan
    COMMUNICATIONS FACULTY OF SCIENCES UNIVERSITY OF ANKARA-SERIES A1 MATHEMATICS AND STATISTICS, 2022, 71 (02): : 601 - 615
  • [2] Evaluation of negative binomial and zero-inflated negative binomial models for the analysis of zero-inflated count data: application to the telemedicine for children with medical complexity trial
    Kyung Hyun Lee
    Claudia Pedroza
    Elenir B. C. Avritscher
    Ricardo A. Mosquera
    Jon E. Tyson
    Trials, 24
  • [3] Evaluation of negative binomial and zero-inflated negative binomial models for the analysis of zero-inflated count data: application to the telemedicine for children with medical complexity trial
    Lee, Kyung Hyun
    Pedroza, Claudia
    Avritscher, Elenir B. C.
    Mosquera, Ricardo A.
    Tyson, Jon E.
    TRIALS, 2023, 24 (01)
  • [4] COMPARING POISSON REGRESSION VIA NEGATIVE BINOMIAL REGRESSION FOR MODELING ZERO-INFLATED DATA
    Neamah, Mandi Wahhab
    Albasril, Enas Abid Alhafidh Mohamed
    Raheem, Saif Hosam
    INTERNATIONAL JOURNAL OF AGRICULTURAL AND STATISTICAL SCIENCES, 2021, 17 (01): : 365 - 373
  • [5] A score test for testing a zero-inflated Poisson regression model against zero-inflated negative binomial alternatives
    Ridout, M
    Hinde, J
    Demétrio, CGB
    BIOMETRICS, 2001, 57 (01) : 219 - 223
  • [6] Some Theoretical Comparisons of Negative Binomial and Zero-Inflated Poisson Distributions
    Feng, Changyong
    Wang, Hongyue
    Han, Yu
    Xia, Yinglin
    Lu, Naiji
    Tu, Xin M.
    COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 2015, 44 (15) : 3266 - 3277
  • [7] Modeling citrus huanglongbing data using a zero-inflated negative binomial distribution
    de Almeida, Eudmar Paiva
    Janeiro, Vanderly
    Guedes, Terezinha Aparecida
    Mulati, Fabio
    Pedroza Carneiro, Jose Walter
    de Carvalho Nunes, William Mario
    ACTA SCIENTIARUM-AGRONOMY, 2016, 38 (03): : 299 - 306
  • [8] Zero-inflated Poisson and negative binomial integer-valued GARCH models
    Zhu, Fukang
    JOURNAL OF STATISTICAL PLANNING AND INFERENCE, 2012, 142 (04) : 826 - 839
  • [9] Analyzing ingrowth using zero-inflated negative binomial models
    Lappi, Juha
    Pukkala, Timo
    SILVA FENNICA, 2020, 54 (04) : 1 - 19
  • [10] A Score Test for Testing a Marginalized Zero-Inflated Poisson Regression Model Against a Marginalized Zero-Inflated Negative Binomial Regression Model
    Gul Inan
    John Preisser
    Kalyan Das
    Journal of Agricultural, Biological and Environmental Statistics, 2018, 23 : 113 - 128