Zero-Inflated INGARCH Using Conditional Poisson and Negative Binomial: Data Application

被引:2
|
作者
Yoon, J. E. [1 ]
Hwang, S. Y. [1 ]
机构
[1] Sookmyung Womens Univ, Dept Stat, Seoul 140742, South Korea
关键词
integer-valued time series; conditional Poisson; zero-inflated INGARCH;
D O I
10.5351/KJAS.2015.28.3.583
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Zero-inflation has recently attracted much attention in integer-valued time series. This article deals with conditional variance (volatility) modeling for the zero-inflated count time series. We incorporate zero-inflation property into integer-valued GARCH (INGARCH) via conditional Poisson and negative binomial marginals. The Cholera frequency time series is analyzed as a data application. Estimation is carried out using EM-algorithm as suggested by Zhu (2012).
引用
下载
收藏
页码:583 / 592
页数:10
相关论文
共 50 条
  • [41] The utility of the zero-inflated Poisson and zero-inflated negative binomial models: a case study of cross-sectional and longitudinal DMF data examining the effect of socio-economic status
    Lewsey, JD
    Thomson, WM
    COMMUNITY DENTISTRY AND ORAL EPIDEMIOLOGY, 2004, 32 (03) : 183 - 189
  • [42] Statistical analysis of variability in TnSeq data across conditions using zero-inflated negative binomial regression
    Siddharth Subramaniyam
    Michael A. DeJesus
    Anisha Zaveri
    Clare M. Smith
    Richard E. Baker
    Sabine Ehrt
    Dirk Schnappinger
    Christopher M. Sassetti
    Thomas R. Ioerger
    BMC Bioinformatics, 20
  • [43] Assessing recurrence of depression using a zero-inflated negative binomial model: A secondary analysis of lifelog data
    Kumagai, Narimasa
    Tajika, Aran
    Hasegawa, Akio
    Kawanishi, Nao
    Fujita, Hirokazu
    Tsujino, Naohisa
    Jinnin, Ran
    Uchida, Megumi
    Okamoto, Yasumasa
    Akechi, Tatsuo
    Furukawa, Toshi A.
    PSYCHIATRY RESEARCH, 2021, 300
  • [44] Statistical analysis of variability in TnSeq data across conditions using zero-inflated negative binomial regression
    Subramaniyam, Siddharth
    DeJesus, Michael A.
    Zaveri, Anisha
    Smith, Clare M.
    Baker, Richard E.
    Ehrt, Sabine
    Schnappinger, Dirk
    Sassetti, Christopher M.
    Ioerger, Thomas R.
    BMC BIOINFORMATICS, 2019, 20 (01)
  • [45] Geographically Weighted Zero-Inflated Negative Binomial Regression: A general case for count data
    da Silva, Alan Ricardo
    de Sousa, Marcos Douglas Rodrigues
    SPATIAL STATISTICS, 2023, 58
  • [46] A Bayesian zero-inflated negative binomial regression model for the integrative analysis of microbiome data
    Jiang, Shuang
    Xiao, Guanghua
    Koh, Andrew Y.
    Kim, Jiwoong
    Li, Qiwei
    Zhan, Xiaowei
    BIOSTATISTICS, 2021, 22 (03) : 522 - 540
  • [47] A bivariate zero-inflated negative binomial regression model for count data with excess zeros
    Wang, PM
    ECONOMICS LETTERS, 2003, 78 (03) : 373 - 378
  • [49] Liu-type shrinkage strategies in zero-inflated negative binomial models with application to Expenditure and Default Data
    Zandi, Zahra
    Belaghi, Reza Arabi
    Bevrani, Hossein
    COMMUNICATIONS IN STATISTICS-SIMULATION AND COMPUTATION, 2024, 53 (08) : 4071 - 4101
  • [50] Zero-Inflated Patent Data Analysis Using Compound Poisson Models
    Park, Sangsung
    Jun, Sunghae
    APPLIED SCIENCES-BASEL, 2023, 13 (07):