Statistical analysis of variability in TnSeq data across conditions using zero-inflated negative binomial regression

被引:12
|
作者
Subramaniyam, Siddharth [1 ]
DeJesus, Michael A. [2 ]
Zaveri, Anisha [3 ]
Smith, Clare M. [4 ]
Baker, Richard E. [4 ]
Ehrt, Sabine [3 ]
Schnappinger, Dirk [3 ]
Sassetti, Christopher M. [4 ]
Ioerger, Thomas R. [1 ]
机构
[1] Texas A&M Univ, Dept Comp Sci & Engn, College Stn, TX 77843 USA
[2] Rockefeller Univ, 1230 York Ave, New York, NY 10021 USA
[3] Weill Cornell Med Coll, Dept Microbiol & Immunol, New York, NY USA
[4] Univ Massachusetts, Dept Microbiol & Physiol Syst, Med Sch, Worcester, MA USA
关键词
TnSeq; Transposon insertion library; Essentiality; Zero-inflated negative binomial distribution; Mycobacterium tuberculosis; TRANSPOSITION; REQUIRES; GROWTH;
D O I
10.1186/s12859-019-3156-z
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Background Deep sequencing of transposon mutant libraries (or TnSeq) is a powerful method for probing essentiality of genomic loci under different environmental conditions. Various analytical methods have been described for identifying conditionally essential genes whose tolerance for insertions varies between two conditions. However, for large-scale experiments involving many conditions, a method is needed for identifying genes that exhibit significant variability in insertions across multiple conditions. Results In this paper, we introduce a novel statistical method for identifying genes with significant variability of insertion counts across multiple conditions based on Zero-Inflated Negative Binomial (ZINB) regression. Using likelihood ratio tests, we show that the ZINB distribution fits TnSeq data better than either ANOVA or a Negative Binomial (in a generalized linear model). We use ZINB regression to identify genes required for infection of M. tuberculosis H37Rv in C57BL/6 mice. We also use ZINB to perform a analysis of genes conditionally essential in H37Rv cultures exposed to multiple antibiotics. Conclusions Our results show that, not only does ZINB generally identify most of the genes found by pairwise resampling (and vastly out-performs ANOVA), but it also identifies additional genes where variability is detectable only when the magnitudes of insertion counts are treated separately from local differences in saturation, as in the ZINB model.
引用
下载
收藏
页数:15
相关论文
共 50 条
  • [1] Statistical analysis of variability in TnSeq data across conditions using zero-inflated negative binomial regression
    Siddharth Subramaniyam
    Michael A. DeJesus
    Anisha Zaveri
    Clare M. Smith
    Richard E. Baker
    Sabine Ehrt
    Dirk Schnappinger
    Christopher M. Sassetti
    Thomas R. Ioerger
    BMC Bioinformatics, 20
  • [2] A Bayesian zero-inflated negative binomial regression model for the integrative analysis of microbiome data
    Jiang, Shuang
    Xiao, Guanghua
    Koh, Andrew Y.
    Kim, Jiwoong
    Li, Qiwei
    Zhan, Xiaowei
    BIOSTATISTICS, 2021, 22 (03) : 522 - 540
  • [3] Modeling Tetanus Neonatorum case using the regression of negative binomial and zero-inflated negative binomial
    Amaliana, Luthfatul
    Sa'adah, Umu
    Wardhani, Ni Wayan Surya
    FIRST AHMAD DAHLAN INTERNATIONAL CONFERENCE ON MATHEMATICS AND MATHEMATICS EDUCATION, 2018, 943
  • [4] COMPARING POISSON REGRESSION VIA NEGATIVE BINOMIAL REGRESSION FOR MODELING ZERO-INFLATED DATA
    Neamah, Mandi Wahhab
    Albasril, Enas Abid Alhafidh Mohamed
    Raheem, Saif Hosam
    INTERNATIONAL JOURNAL OF AGRICULTURAL AND STATISTICAL SCIENCES, 2021, 17 (01): : 365 - 373
  • [5] A framework of zero-inflated bayesian negative binomial regression models for spatiotemporal data
    He, Qing
    Huang, Hsin-Hsiung
    JOURNAL OF STATISTICAL PLANNING AND INFERENCE, 2024, 229
  • [6] POISSON AND NEGATIVE BINOMIAL REGRESSION MODELS FOR ZERO-INFLATED DATA: AN EXPERIMENTAL STUDY
    Yildirim, Gizem
    Kaciranlar, Selahattin
    Yildirim, Hasan
    COMMUNICATIONS FACULTY OF SCIENCES UNIVERSITY OF ANKARA-SERIES A1 MATHEMATICS AND STATISTICS, 2022, 71 (02): : 601 - 615
  • [7] Parameter Estimation on Zero-Inflated Negative Binomial Regression with Right Truncated Data
    Saffari, Seyed Ehsan
    Adnan, Robiah
    SAINS MALAYSIANA, 2012, 41 (11): : 1483 - 1487
  • [8] Bivariate zero-inflated negative binomial regression model with applications
    Faroughi, Pouya
    Ismail, Noriszura
    JOURNAL OF STATISTICAL COMPUTATION AND SIMULATION, 2017, 87 (03) : 457 - 477
  • [9] An alternative bivariate zero-inflated negative binomial regression model using a copula
    So, Sunha
    Lee, Dong-Hee
    Jung, Byoung Cheol
    ECONOMICS LETTERS, 2011, 113 (02) : 183 - 185
  • [10] Evaluation of negative binomial and zero-inflated negative binomial models for the analysis of zero-inflated count data: application to the telemedicine for children with medical complexity trial
    Kyung Hyun Lee
    Claudia Pedroza
    Elenir B. C. Avritscher
    Ricardo A. Mosquera
    Jon E. Tyson
    Trials, 24