Effects of high-flux low-energy ion bombardment on the low-temperature growth morphology of TiN(001) epitaxial layers

被引:44
|
作者
Karr, BW
Cahill, DG
Petrov, I
Greene, JE
机构
[1] Univ Illinois, Dept Mat Sci, Mat Res Lab, Urbana, IL 61801 USA
[2] Univ Illinois, Coordinated Sci Lab, Urbana, IL 61801 USA
来源
PHYSICAL REVIEW B | 2000年 / 61卷 / 23期
关键词
D O I
10.1103/PhysRevB.61.16137
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Ultrahigh vacuum scanning tunneling microscopy (STM) is used to characterize the surface morphology of TiN(001) epitaxial layers grown by de reactive magnetron sputtering at growth temperatures of T-s=650 and T-s=750 degrees C. An auxiliary anode is used to bias the N-2 plasma and produce a large flux of low-energy N-2(+) ions that bombard the Aim surface during growth: the ratio of the N-2(+) flux to the Ti growth flux is approximate to 25. At ion energies E-i near the threshold for the production of bulk defects (E-i=43 eV and T-s=650 degrees C), ion bombardment decreases the amplitude of the roughness, decreases the average distance between growth mounds, and reduces the sharpness of grooves between growth mounds. The critical island radius for second layer nucleation R-c is approximately 12 and 17 nm at growth temperatures of 650 and 750 degrees C respectively; at 650 degrees C, R-c is reduced to approximate to 10 nm by ion bombardment.
引用
收藏
页码:16137 / 16143
页数:7
相关论文
共 50 条
  • [41] EFFECTS OF LOW-ENERGY AR+ ION-BOMBARDMENT ON GAAS
    VASEASHTA, A
    ELSHABINIRIAD, A
    BURTON, LC
    MATERIALS SCIENCE AND ENGINEERING B-SOLID STATE MATERIALS FOR ADVANCED TECHNOLOGY, 1991, 9 (04): : 489 - 500
  • [42] Growth mechanism of subsurface hydrogen cavities in tungsten exposed to low-energy high-flux hydrogen plasma
    Chen, W. Q.
    Wang, X. Y.
    Chiu, Y. L.
    Morgan, T. W.
    Guo, W. G.
    Li, K. L.
    Yuan, Y.
    Xu, B.
    Liu, W.
    ACTA MATERIALIA, 2020, 193 (193) : 19 - 27
  • [43] Deuterium accumulation in tungsten under low-energy high-flux plasma exposure
    Grigorev P.Y.
    Dubinko V.I.
    Terentyev D.A.
    Bakaev A.V.
    Zhurkin E.E.
    Journal of Surface Investigation, 2014, 8 (02): : 234 - 238
  • [44] Surface chemical changes induced by low-energy ion bombardment in chromium nitride layers
    Bertóti, I
    Mohai, M
    Mayrhofer, PH
    Mitterer, C
    SURFACE AND INTERFACE ANALYSIS, 2002, 34 (01) : 740 - 743
  • [45] Directed nanostructural evolution in Ti0.8Ce0.2N layers grown as a function of low-energy, high-flux ion irradiation
    Lee, TY
    Kodambaka, S
    Wen, JG
    Twesten, RD
    Greene, JE
    Petrov, I
    APPLIED PHYSICS LETTERS, 2004, 84 (15) : 2796 - 2798
  • [46] TiN film growth on misoriented TiN grains with simultaneous low-energy bombardment: Restructuring leading to epitaxy
    Edstrom, D.
    Sangiovanni, D. G.
    Hultman, L.
    Petrov, I
    Greene, J. E.
    Chirita, V
    THIN SOLID FILMS, 2019, 688
  • [47] Effect of high-flux, low-energy He+ ion irradiation on Ta as a plasma-facing material
    T. J. Novakowski
    J. K. Tripathi
    A. Hassanein
    Scientific Reports, 6
  • [48] Effects of low and high energy ion bombardment on ETFE polymer
    Minamisawa, R. A.
    De Almeida, A.
    Abidzina, V.
    Parada, M. A.
    Muntele, I.
    Ila, D.
    NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION B-BEAM INTERACTIONS WITH MATERIALS AND ATOMS, 2007, 257 (568-571): : 568 - 571
  • [49] VERY-LOW-TEMPERATURE EPITAXIAL SILICON GROWTH BY LOW-KINETIC-ENERGY PARTICLE BOMBARDMENT
    OHMI, T
    MATSUDO, K
    SHIBATA, T
    ICHIKAWA, T
    IWABUCHI, H
    JAPANESE JOURNAL OF APPLIED PHYSICS PART 2-LETTERS & EXPRESS LETTERS, 1988, 27 (11): : L2146 - L2148
  • [50] Temperature dependence of surface topography and deuterium retention in tungsten exposed to low-energy, high-flux D plasma
    Alimov, V. Kh
    Shu, W. M.
    Roth, J.
    Lindig, S.
    Balden, M.
    Isobe, K.
    Yamanishi, T.
    JOURNAL OF NUCLEAR MATERIALS, 2011, 417 (1-3) : 572 - 575