Effects of high-flux low-energy ion bombardment on the low-temperature growth morphology of TiN(001) epitaxial layers

被引:44
|
作者
Karr, BW
Cahill, DG
Petrov, I
Greene, JE
机构
[1] Univ Illinois, Dept Mat Sci, Mat Res Lab, Urbana, IL 61801 USA
[2] Univ Illinois, Coordinated Sci Lab, Urbana, IL 61801 USA
来源
PHYSICAL REVIEW B | 2000年 / 61卷 / 23期
关键词
D O I
10.1103/PhysRevB.61.16137
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Ultrahigh vacuum scanning tunneling microscopy (STM) is used to characterize the surface morphology of TiN(001) epitaxial layers grown by de reactive magnetron sputtering at growth temperatures of T-s=650 and T-s=750 degrees C. An auxiliary anode is used to bias the N-2 plasma and produce a large flux of low-energy N-2(+) ions that bombard the Aim surface during growth: the ratio of the N-2(+) flux to the Ti growth flux is approximate to 25. At ion energies E-i near the threshold for the production of bulk defects (E-i=43 eV and T-s=650 degrees C), ion bombardment decreases the amplitude of the roughness, decreases the average distance between growth mounds, and reduces the sharpness of grooves between growth mounds. The critical island radius for second layer nucleation R-c is approximately 12 and 17 nm at growth temperatures of 650 and 750 degrees C respectively; at 650 degrees C, R-c is reduced to approximate to 10 nm by ion bombardment.
引用
收藏
页码:16137 / 16143
页数:7
相关论文
共 50 条
  • [31] SURFACE DEFECT PRODUCTION ON GE(001) DURING LOW-ENERGY ION-BOMBARDMENT
    FLORO, JA
    KELLERMAN, BK
    CHASON, E
    PICRAUX, ST
    BRICE, DK
    HORN, KM
    JOURNAL OF APPLIED PHYSICS, 1995, 77 (06) : 2351 - 2357
  • [32] Effect of austenitic stainless steel composition on low-energy, high-flux, nitrogen ion beam processing
    Colorado Sch of Mines, Golden, United States
    Surf Coat Technol, 1 (178-184):
  • [33] High-flux ion irradiation with energy of ∼20 eV affecting phase segregation and low-temperature growth of nc-TiN/a-Si3N4 nanocomposite films
    Li, Z. G.
    Wu, Y. X.
    Miyake, S.
    JOURNAL OF VACUUM SCIENCE & TECHNOLOGY A, 2007, 25 (06): : 1524 - 1528
  • [34] Development of new steady-state, low-energy, and high-flux ion beam test device
    Shimada, T
    Ueda, Y
    Sagara, A
    Nishikawa, M
    REVIEW OF SCIENTIFIC INSTRUMENTS, 2002, 73 (04): : 1741 - 1745
  • [35] Effect of austenitic stainless steel composition on low-energy, high-flux, nitrogen ion beam processing
    Williamson, DL
    Davis, JA
    Wilbur, PJ
    SURFACE & COATINGS TECHNOLOGY, 1998, 104 : 178 - 184
  • [36] EFFECTS OF LOW-ENERGY LOW-FLUX ION-BOMBARDMENT ON THE PROPERTIES OF VO2 THIN-FILMS
    CASE, FC
    JOURNAL OF VACUUM SCIENCE & TECHNOLOGY A, 1989, 7 (03): : 1194 - 1198
  • [37] Temperature dependence of blistering and deuterium retention in tungsten exposed to high-flux and low-energy deuterium plasma
    Shu, W. M.
    Isobe, K.
    Yamanishi, T.
    FUSION ENGINEERING AND DESIGN, 2008, 83 (7-9) : 1044 - 1048
  • [38] LOW-ENERGY ION-BOMBARDMENT EFFECTS IN SIO2
    MCCAUGHAN, DV
    MURPHY, VT
    IEEE TRANSACTIONS ON NUCLEAR SCIENCE, 1972, NS19 (06) : 249 - 255
  • [39] Effects of low-energy ion beam bombardment on biological cell envelopes
    Yu, L. D.
    Sangyuenyongpipat, S.
    Anuntalabhochai, S.
    Phanchaisri, B.
    Vilaithong, T.
    Brown, I. G.
    SURFACE & COATINGS TECHNOLOGY, 2007, 201 (19-20): : 8055 - 8061
  • [40] Effect of the surface temperature on surface morphology, deuterium retention and erosion of EUROFER steel exposed to low-energy, high-flux deuterium plasma
    Balden, M.
    Elgeti, S.
    Zibrov, M.
    Bystrov, K.
    Morgan, T. W.
    NUCLEAR MATERIALS AND ENERGY, 2017, 12 : 289 - 296