Nonabelian tensor product;
nilpotent multiplier;
nilpotent group;
extra special p-group;
D O I:
10.1142/S1793557122500905
中图分类号:
O1 [数学];
学科分类号:
0701 ;
070101 ;
摘要:
Let G be a group given by a free presentation G similar or equal to F/R. The 2-nilpotent multiplier of G is the abelian group M-(2)( G) = (R boolean AND gamma(3)(F))/ gamma(3)(R, F) which is invariant of G [R. Baer, Representations of groups as quotient groups, I, II, and III, Trans. Amer. Math. Soc. 58 (1945) 295-419]. An effective approach to compute the 2-nilpotent multiplier of groups has been proposed by Burns and Ellis [On the nilpotent multipliers of a group, Math. Z. 226 (1997) 405-428], which is based on the nonabelian tensor product. We use this method to determine the explicit structure of M-(2)(G), when G is a finite (generalized) extra special p-group. Moreover, the descriptions of the triple tensor product circle times(3)G, and the triple exterior product Lambda(3)G are given.
机构:
Umm Al Qura Univ, Fac Sci, Math Dept, POB 1403521955, Mecca, Saudi Arabia
Al Baha Univ, Coll Sci, Dept Math, POB 773865799, Al Baha, Saudi ArabiaUmm Al Qura Univ, Fac Sci, Math Dept, POB 1403521955, Mecca, Saudi Arabia
Alharbi, Bashayer S.
Alghamdi, Ahmad M.
论文数: 0引用数: 0
h-index: 0
机构:
Umm Al Qura Univ, Fac Sci, Math Dept, POB 1403521955, Mecca, Saudi ArabiaUmm Al Qura Univ, Fac Sci, Math Dept, POB 1403521955, Mecca, Saudi Arabia