A tensor product approach to compute 2-nilpotent multiplier of p-groups

被引:2
|
作者
Fasihi, F. [1 ]
Jafari, S. Hadi [1 ]
机构
[1] Islamic Azad Univ, Dept Math, Mashhad Branch, Mashhad, Razavi Khorasan, Iran
关键词
Nonabelian tensor product; nilpotent multiplier; nilpotent group; extra special p-group;
D O I
10.1142/S1793557122500905
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let G be a group given by a free presentation G similar or equal to F/R. The 2-nilpotent multiplier of G is the abelian group M-(2)( G) = (R boolean AND gamma(3)(F))/ gamma(3)(R, F) which is invariant of G [R. Baer, Representations of groups as quotient groups, I, II, and III, Trans. Amer. Math. Soc. 58 (1945) 295-419]. An effective approach to compute the 2-nilpotent multiplier of groups has been proposed by Burns and Ellis [On the nilpotent multipliers of a group, Math. Z. 226 (1997) 405-428], which is based on the nonabelian tensor product. We use this method to determine the explicit structure of M-(2)(G), when G is a finite (generalized) extra special p-group. Moreover, the descriptions of the triple tensor product circle times(3)G, and the triple exterior product Lambda(3)G are given.
引用
收藏
页数:10
相关论文
共 50 条
  • [21] Finite groups with 2-nilpotent subgroups of even index
    V. S. Monakhov
    Mathematical Notes, 1997, 61 : 585 - 589
  • [22] On Groups of Automorphisms of Nilpotent p-Groups of Finite Rank
    Xu, Tao
    Liu, Heguo
    CZECHOSLOVAK MATHEMATICAL JOURNAL, 2020, 70 (04) : 1161 - 1165
  • [23] NILPOTENT PRODUCTS OF CYCLIC GROUPS AND CLASSIFICATION OF p-GROUPS
    Kaheni, Azam
    Hokmabadi, Azam
    Kayvanfar, Saeed
    COMMUNICATIONS IN ALGEBRA, 2013, 41 (01) : 154 - 159
  • [24] On Groups of Automorphisms of Nilpotent p-Groups of Finite Rank
    Tao Xu
    Heguo Liu
    Czechoslovak Mathematical Journal, 2020, 70 : 1161 - 1165
  • [25] Quasivariety generated by free metabelian and 2-nilpotent groups
    Budkin A.I.
    Algebra and Logic, 2005, 44 (4) : 213 - 218
  • [26] HOMOTOPY TYPES OF REDUCED 2-NILPOTENT SIMPLICIAL GROUPS
    Baues, Hans-Joachim
    Mikhailov, Roman
    INDIAN JOURNAL OF PURE & APPLIED MATHEMATICS, 2009, 40 (01): : 35 - 80
  • [27] On the order of nilpotent multipliers of finite p-groups
    Mashayekhy, B
    Sanati, MA
    COMMUNICATIONS IN ALGEBRA, 2005, 33 (07) : 2079 - 2087
  • [28] 2-Nilpotent multipliers of a direct product of Lie algebras
    Niroomand P.
    Parvizi M.
    Rendiconti del Circolo Matematico di Palermo Series 2, 2016, 65 (3): : 519 - 523
  • [29] Barely transitive locally nilpotent p-groups
    Asar, AO
    JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 2000, 61 : 315 - 318
  • [30] Barely transitive locally nilpotent p-groups
    Asar, AO
    JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 1997, 55 : 357 - 362