Multi-person pose tracking with occlusion solving using motion models

被引:0
|
作者
Gamez, Lucas [1 ,2 ]
Yoshiyasu, Yusuke [1 ]
Yoshida, Eiichi [1 ]
机构
[1] Natl Inst Adv Ind Sci & Technol, CNRS AIST JRL Joint Robot Lab IRL, Tsukuba, Ibaraki, Japan
[2] Univ Montpellier, Montpellier, France
关键词
D O I
10.1109/IEEECONF49454.2021.9382612
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
We present a method for the multi-person human tracking problem including occlusion solving. To track and associate frame-by-frame human detections obtained using a deep learning approach, we propose to combine motion features extracted by optical flow and Kalman filtering, which allow us to predict the future poses of targets. By taking advantage of the characteristics of both motions features, we are able to handle sharp motions of the target and occlusions. With our simple occlusion handling mechanism, we achieve comparable results with state of the art and are able to keep track of a target identity even when occlusions occur.
引用
收藏
页码:270 / 275
页数:6
相关论文
共 50 条
  • [21] Pose Knowledge Transfer for multi-person pose estimation
    Buwei Li
    Yi Ji
    Ying Li
    Yunlong Xu
    Chunping Liu
    Signal, Image and Video Processing, 2022, 16 : 321 - 328
  • [22] Pose Knowledge Transfer for multi-person pose estimation
    Li, Buwei
    Ji, Yi
    Li, Ying
    Xu, Yunlong
    Liu, Chunping
    SIGNAL IMAGE AND VIDEO PROCESSING, 2022, 16 (02) : 321 - 328
  • [23] Pose Partition Networks for Multi-person Pose Estimation
    Nie, Xuecheng
    Feng, Jiashi
    Xing, Junliang
    Yan, Shuicheng
    COMPUTER VISION - ECCV 2018, PT V, 2018, 11209 : 705 - 720
  • [24] Orientation and Occlusion Aware Multi-Person Pose Estimation using Multi-Task Deep Learning Network
    Zhang, Huiyang
    Gu, Yanlei
    Kamijo, Shunsuke
    2019 IEEE INTERNATIONAL CONFERENCE ON CONSUMER ELECTRONICS (ICCE), 2019,
  • [25] Real-time Multi-person Pose Tracking Method Using Deep Reinforcement Learning
    Jia, Baojian
    Ren, Jie
    INTERNATIONAL JOURNAL OF IMAGE AND GRAPHICS, 2023, 23 (06)
  • [26] MultiPoseNet: Fast Multi-Person Pose Estimation Using Pose Residual Network
    Kocabas, Muhammed
    Karagoz, Salih
    Akbas, Emre
    COMPUTER VISION - ECCV 2018, PT XI, 2018, 11215 : 437 - 453
  • [27] JRDB-Pose: A Large-scale Dataset for Multi-Person Pose Estimation and Tracking
    Vendrow, Edward
    Le, Duy Tho
    Cai, Jianfei
    Rezatofighi, Hamid
    2023 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION, CVPR, 2023, : 4811 - 4820
  • [28] Monocular multi-person pose estimation: A survey
    dos Reis, Eduardo Souza
    Seewald, Lucas Adams
    Antunes, Rodolfo Stoffel
    Rodrigues, Vinicius Facco
    Righi, Rodrigo da Rosa
    da Costa, Cristiano Andre
    da Silveira Jr, Luiz Gonzaga
    Eskofier, Bjoern
    Maier, Andreas
    Horz, Tim
    Fahrig, Rebecca
    PATTERN RECOGNITION, 2021, 118
  • [29] Explicit Occlusion Reasoning for Multi-person 3D Human Pose Estimation
    Liu, Qihao
    Zhang, Yi
    Bai, Song
    Yuille, Alan
    COMPUTER VISION - ECCV 2022, PT V, 2022, 13665 : 497 - 517
  • [30] RMPE: Regional Multi-Person Pose Estimation
    Fang, Hao-Shu
    Xie, Shuqin
    Tai, Yu-Wing
    Lu, Cewu
    2017 IEEE INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV), 2017, : 2353 - 2362