RMPE: Regional Multi-Person Pose Estimation

被引:1089
|
作者
Fang, Hao-Shu [1 ]
Xie, Shuqin [1 ]
Tai, Yu-Wing [2 ]
Lu, Cewu [1 ]
机构
[1] Shanghai Jiao Tong Univ, Shanghai, Peoples R China
[2] Tencent YouTu, Shenzhen, Peoples R China
关键词
D O I
10.1109/ICCV.2017.256
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Multi-person pose estimation in the wild is challenging. Although state-of-the-art human detectors have demonstrated good performance, small errors in localization and recognition are inevitable. These errors can cause failures for a single-person pose estimator (SPPE), especially for methods that solely depend on human detection results. In this paper, we propose a novel regional multi-person pose estimation (RMPE) framework to facilitate pose estimation in the presence of inaccurate human bounding boxes. Our framework consists of three components: Symmetric Spatial Transformer Network (SSTN), Parametric Pose Non-Maximum-Suppression (NMS), and Pose-Guided Proposals Generator (PGPG). Our method is able to handle inaccurate bounding boxes and redundant detections, allowing it to achieve 76.7 mAP on the MPII (multi person) dataset[3]. Our model and source codes are made publicly available.
引用
收藏
页码:2353 / 2362
页数:10
相关论文
共 50 条
  • [1] Pose Knowledge Transfer for multi-person pose estimation
    Buwei Li
    Yi Ji
    Ying Li
    Yunlong Xu
    Chunping Liu
    [J]. Signal, Image and Video Processing, 2022, 16 : 321 - 328
  • [2] Pose Partition Networks for Multi-person Pose Estimation
    Nie, Xuecheng
    Feng, Jiashi
    Xing, Junliang
    Yan, Shuicheng
    [J]. COMPUTER VISION - ECCV 2018, PT V, 2018, 11209 : 705 - 720
  • [3] Pose Knowledge Transfer for multi-person pose estimation
    Li, Buwei
    Ji, Yi
    Li, Ying
    Xu, Yunlong
    Liu, Chunping
    [J]. SIGNAL IMAGE AND VIDEO PROCESSING, 2022, 16 (02) : 321 - 328
  • [4] Monocular multi-person pose estimation: A survey
    dos Reis, Eduardo Souza
    Seewald, Lucas Adams
    Antunes, Rodolfo Stoffel
    Rodrigues, Vinicius Facco
    Righi, Rodrigo da Rosa
    da Costa, Cristiano Andre
    da Silveira Jr, Luiz Gonzaga
    Eskofier, Bjoern
    Maier, Andreas
    Horz, Tim
    Fahrig, Rebecca
    [J]. PATTERN RECOGNITION, 2021, 118
  • [5] Multi-Person Pose Estimation on Embedded Device
    Ma, Zhipeng
    Tian, Dawei
    Zhang, Ming
    He, Dingxin
    [J]. 2020 INTERNATIONAL CONFERENCE ON INTELLIGENT COMPUTING AND HUMAN-COMPUTER INTERACTION (ICHCI 2020), 2020, : 57 - 61
  • [6] The Overview of Multi-person Pose Estimation Method
    Li, Bingyi
    Zou, Jiaqi
    Wang, Luyao
    Li, Xiangyuan
    Li, Yue
    Lei, Rongjia
    Sun, Songlin
    [J]. SIGNAL AND INFORMATION PROCESSING, NETWORKING AND COMPUTERS (ICSINC), 2019, 550 : 600 - 607
  • [7] Multi-Domain Pose Network for Multi-Person Pose Estimation and Tracking
    Guo, Hengkai
    Tang, Tang
    Luo, Guozhong
    Chen, Riwei
    Lu, Yongchen
    Wen, Linfu
    [J]. COMPUTER VISION - ECCV 2018 WORKSHOPS, PT II, 2019, 11130 : 209 - 216
  • [8] Lite Hourglass Network for Multi-person Pose Estimation
    Zhao, Ying
    Luo, Zhiwei
    Quan, Changqin
    Liu, Dianchao
    Wang, Gang
    [J]. MULTIMEDIA MODELING (MMM 2020), PT II, 2020, 11962 : 226 - 238
  • [9] Integral Knowledge Distillation for Multi-Person Pose Estimation
    Xu, Xixia
    Zou, Qi
    Lin, Xue
    Huang, Yaping
    Tian, Yi
    [J]. IEEE SIGNAL PROCESSING LETTERS, 2020, 27 : 436 - 440
  • [10] Multi-Person Pose Estimation Using Thermal Images
    Chen, I-Chien
    Wang, Chang-Jen
    Wen, Chao-Kai
    Tzou, Shiow-Jyu
    [J]. IEEE ACCESS, 2020, 8 : 174964 - 174971