Somatic Mutations Drive Distinct Imaging Phenotypes in Lung Cancer

被引:340
|
作者
Velazquez, Emmanuel Rios [1 ]
Parmar, Chintan [1 ]
Liu, Ying [2 ,3 ]
Coroller, Thibaud P. [1 ]
Cruz, Gisele [4 ]
Stringfield, Olya [2 ]
Ye, Zhaoxiang [3 ]
Makrigiorgos, Mike [1 ]
Fennessy, Fiona [1 ,4 ]
Mak, Raymond H. [1 ]
Gillies, Robert [2 ]
Quackenbush, John [5 ,6 ,7 ]
Aerts, Hugo J. W. L. [1 ,4 ,5 ]
机构
[1] Harvard Med Sch, Brigham & Womens Hosp, Dept Radiat Oncol, Dana Farber Canc Inst, Boston, MA USA
[2] H Lee Moffitt Canc Ctr & Res Inst, Dept Canc Imaging & Metab, Tampa, FL USA
[3] Tianjin Med Univ, Dept Radiol, Canc Inst & Hosp,Tianjins Clin Res Ctr Canc, Natl Clin Res Ctr Canc,Key Lab Canc Prevent & The, Tianjin, Peoples R China
[4] Harvard Med Sch, Dana Farber Canc Inst, Brigham & Womens Hosp, Dept Radiol, Boston, MA USA
[5] Dana Farber Canc Inst, Dept Biostat & Computat Biol, Boston, MA 02115 USA
[6] Dana Farber Canc Inst, Dept Canc Biol, Boston, MA 02115 USA
[7] Harvard TH Chan Sch Publ Hlth, Dept Biostat, Boston, MA USA
关键词
FACTOR RECEPTOR MUTATIONS; INTRATUMOR HETEROGENEITY; PATHOLOGICAL RESPONSE; TUMOR HETEROGENEITY; FEATURES; RADIOMICS; SIGNATURE; ASSOCIATIONS; INFORMATION; PREDICTION;
D O I
10.1158/0008-5472.CAN-17-0122
中图分类号
R73 [肿瘤学];
学科分类号
100214 ;
摘要
Tumors are characterized by somatic mutations that drive biological processes ultimately reflected in tumor phenotype. With regard to radiographic phenotypes, generally unconnected through present understanding to the presence of specific mutations, artificial intelligence methods can automatically quantify phenotypic characters by using predefined, engineered algorithms or automatic deep-learning methods, a process also known as radiomics. Here we demonstrate how imaging phenotypes can be connected to somatic mutations through an integrated analysis of independent datasets of 763 lung adenocarcinoma patients with somatic mutation testing and engineered CT image analytics. We developed radiomic signatures capable of distinguishing between tumor genotypes in a discovery cohort (n = 353) and verified them in an independent validation cohort (n = 352). All radiomic signatures significantly outperformed conventional radiographic predictors (tumor volume andmaximumdiameter). We found a radiomic signature related to radiographic heterogeneity that successfully discriminated between EGFR_ and EGFR = cases (AUC = 0.69). Combining this signature with a clinical model of EGFR status (AUC = 0.70) significantly improved prediction accuracy (AUC = 0.75). The highest performing signature was capable of distinguishing between EGFR_ and KRAS_ tumors (AUC = 0.80) and, when combined with a clinical model (AUC = 0.81), substantially improved its performance (AUC = 0.86). A KRAS_/KRAS = radiomic signature also showed significant albeit lower performance (AUC = 0.63) and did not improve the accuracy of a clinical predictor of KRAS status. Our results argue that somatic mutations drive distinct radiographic phenotypes that can be predicted by radiomics. This work has implications for the use of imaging-based biomarkers in the clinic, as applied noninvasively, repeatedly, and at low cost. (C) 2017 AACR.
引用
收藏
页码:3922 / 3930
页数:9
相关论文
共 50 条
  • [41] EGFR somatic mutations in lung cancer: of microindels, smoking and drug response.
    Gu, D.
    Scaringe, W. A.
    Li, K.
    Saldivar, J. S.
    Hill, K. A.
    Chen, Z.
    Gonzalez, K. D.
    Sommer, S. S.
    ENVIRONMENTAL AND MOLECULAR MUTAGENESIS, 2006, 47 (06) : 463 - 463
  • [42] CT-Based Volumetric Features Are Associated with Somatic Mutations in Lung Cancer
    Coroller, T.
    Grossmann, P.
    Hou, Y.
    Lee, S.
    Mak, R.
    Aerts, H.
    MEDICAL PHYSICS, 2015, 42 (06) : 3322 - 3323
  • [43] Somatic structural variants drive distinct modes of oncogenesis in melanoma
    Conway, Jake R.
    Gillani, Riaz
    Crowdis, Jett
    Reardon, Brendan
    Park, Jihye
    Han, Seunghun
    Titchen, Breanna
    Benamar, Mouadh
    Haq, Rizwan
    Allen, Eliezer M. Van
    JOURNAL OF CLINICAL INVESTIGATION, 2024, 134 (13):
  • [44] Imaging mutations in non small cell lung cancer (NSCLC)
    Haslop, Anna
    Robins, Edward George
    Goggi, Julian Luke
    JOURNAL OF LABELLED COMPOUNDS & RADIOPHARMACEUTICALS, 2017, 60 : S337 - S337
  • [45] Acute myeloid leukemia ontogeny is defined by distinct somatic mutations
    Lindsley, R. Coleman
    Mar, Brenton G.
    Mazzola, Emanuele
    Grauman, Peter V.
    Shareef, Sarah
    Allen, Steven L.
    Pigneux, Arnaud
    Wetzler, Meir
    Stuart, Robert K.
    Erba, Harry P.
    Damon, Lloyd E.
    Powel, Bayard L.
    Lindeman, Neal
    Steensma, David P.
    Wadleigh, Martha
    DeAngelo, Daniel J.
    Neuberg, Donna
    Stone, Richard M.
    Ebert, Benjamin L.
    BLOOD, 2015, 125 (09) : 1367 - 1376
  • [46] Identifying Associations between Somatic Mutations and Clinicopathologic Findings in Lung Cancer Pathology Reports
    Kumar, Nishant
    Tafe, Laura J.
    Higgins, John H.
    Peterson, Jason D.
    de Abreu, Francise Blumental
    Deharvengt, Sophie J.
    Tsongalis, Gregory J.
    Amos, Christopher I.
    Hassanpour, Saeed
    METHODS OF INFORMATION IN MEDICINE, 2018, 57 (1-2) : 63 - 73
  • [47] Different bacterial cargo in apoptotic cells drive distinct macrophage phenotypes
    Ana Carolina Guerta Salina
    Letícia de Aquino Penteado
    Naiara Naiana Dejani
    Ludmilla Silva-Pereira
    Breno Vilas Boas Raimundo
    Gabriel Ferranti Corrêa
    Karen Cristina Oliveira
    Leandra Naira Zambelli Ramalho
    Mèdéton Mahoussi Michaël Boko
    Vânia L. D. Bonato
    C. Henrique Serezani
    Alexandra Ivo Medeiros
    Apoptosis, 2024, 29 : 321 - 330
  • [48] Different bacterial cargo in apoptotic cells drive distinct macrophage phenotypes
    Salina, Ana Carolina Guerta
    Penteado, Leticia de Aquino
    Dejani, Naiara Naiana
    Silva-Pereira, Ludmilla
    Raimundo, Breno Vilas Boas
    Correa, Gabriel Ferranti
    Oliveira, Karen Cristina
    Ramalho, Leandra Naira Zambelli
    Boko, Medeton Mahoussi Michael
    Bonato, Vania L. D.
    Henrique Serezani, C.
    Medeiros, Alexandra Ivo
    APOPTOSIS, 2024, 29 (3-4) : 321 - 330
  • [49] Distinct macrophage phenotypes in allergic and nonallergic lung inflammation
    Robbe, Patricia
    Draijer, Christina
    Borg, Thiago R.
    Luinge, Marjan
    Timens, Wim
    Wouters, Inge M.
    Melgert, Barbro N.
    Hylkema, Machteld N.
    AMERICAN JOURNAL OF PHYSIOLOGY-LUNG CELLULAR AND MOLECULAR PHYSIOLOGY, 2015, 308 (04) : L358 - L367
  • [50] Association between lung cancer somatic mutations and occupational exposure in never-smokers
    Paris, Christophe
    Do, Pascal
    Mastroianni, Benedicte
    Dixmier, Adrien
    Dumont, Patrick
    Pichon, Eric
    Chouaid, Christos
    Coudert, Bruno
    Foucher, Pascal
    Fraboulet, Severine
    Locatelli-Sanchez, Myriam
    Baize, Nathalie
    Dansin, Eric
    Moreau, Lionel
    Vincent, Michel
    Missy, Pascale
    Morin, Franck
    Moro-Sibilot, Denis
    Couraud, Sebastien
    EUROPEAN RESPIRATORY JOURNAL, 2017, 50 (04)